"...src/static/style/experiment/trialdetail/compare.scss" did not exist on "59b76c2ec6e66d041fdd23826d8d36a6f0fb2767"
Unverified Commit f0fd73a2 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Document check copies (#25291)

* Document check copies better and add tests

* Include header in check for copies

* Manual fixes

* Try autofix

* Fixes

* Clean tests

* Finalize doc

* Remove debug print

* More fixes
parent 29f04002
......@@ -246,7 +246,7 @@ class EfficientFormerConvMlp(nn.Module):
# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -667,7 +667,7 @@ class TFEsmEncoder(Layer):
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
class TFEsmPooler(Layer):
class TFEsmPooler(tf.keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
......
......@@ -286,7 +286,7 @@ class FocalNetPatchEmbeddings(nn.Module):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -52,8 +52,8 @@ GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = [
]
# Copied from transformers.models.segformer.modeling_segformer.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -272,7 +272,7 @@ class GPTBigCodeMLP(nn.Module):
self.dropout = nn.Dropout(config.resid_pdrop)
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
def forward(self, hidden_states: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
......
......@@ -30,7 +30,8 @@ from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
from ...pipelines.conversational import Conversation
from ...tokenization_utils_base import TextInput
logger = logging.get_logger(__name__)
......@@ -168,7 +169,7 @@ class LlamaTokenizer(PreTrainedTokenizer):
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
def tokenize(self, text, **kwargs) -> List[str]:
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
......@@ -176,7 +177,7 @@ class LlamaTokenizer(PreTrainedTokenizer):
return super().tokenize(text, **kwargs)
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
def _tokenize(self, text):
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
......
......@@ -56,7 +56,7 @@ remat = nn_partitioning.remat
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: np.array, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray:
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
......
......@@ -227,7 +227,7 @@ def create_sinusoidal_positions(n_pos, dim):
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
......
......@@ -123,7 +123,7 @@ def window_reverse(windows, window_size, height, width):
# Copied from transformers.models.swin.modeling_swin.drop_path
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -51,7 +51,7 @@ MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = [
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -263,7 +263,7 @@ class NatDownsampler(nn.Module):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -47,7 +47,6 @@ if is_torch_available():
logger = logging.get_logger(__name__)
# Copied from transformers.models.detr.modeling_detr._upcast
def _upcast(t):
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
......
......@@ -22,7 +22,7 @@ from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch import Tensor, nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
......@@ -120,7 +120,7 @@ class OwlViTOutput(ModelOutput):
# Copied from transformers.models.detr.modeling_detr._upcast
def _upcast(t: torch.Tensor) -> torch.Tensor:
def _upcast(t: Tensor) -> Tensor:
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
......@@ -129,7 +129,7 @@ def _upcast(t: torch.Tensor) -> torch.Tensor:
# Copied from transformers.models.detr.modeling_detr.box_area
def box_area(boxes: torch.Tensor) -> torch.Tensor:
def box_area(boxes: Tensor) -> Tensor:
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
......@@ -146,7 +146,7 @@ def box_area(boxes: torch.Tensor) -> torch.Tensor:
# Copied from transformers.models.detr.modeling_detr.box_iou
def box_iou(boxes1: torch.Tensor, boxes2: torch.Tensor) -> torch.Tensor:
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
......
......@@ -210,7 +210,7 @@ PEGASUS_DECODE_INPUTS_DOCSTRING = r"""
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: np.array, pad_token_id: int, decoder_start_token_id: int) -> np.ndarray:
def shift_tokens_right(input_ids: jnp.array, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
......@@ -223,7 +223,7 @@ def shift_tokens_right(input_ids: np.array, pad_token_id: int, decoder_start_tok
# Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions
def create_sinusoidal_positions(n_pos, dim, dtype):
def create_sinusoidal_positions(n_pos, dim):
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
sentinel = dim // 2 + dim % 2
out = np.zeros_like(position_enc)
......@@ -686,9 +686,7 @@ class FlaxPegasusEncoder(nn.Module):
self.max_source_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(
self.config.max_position_embeddings, embed_dim, dtype=self.dtype
)
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
......@@ -755,9 +753,7 @@ class FlaxPegasusDecoder(nn.Module):
self.max_target_positions = self.config.max_position_embeddings
self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
self.embed_positions = create_sinusoidal_positions(
self.config.max_position_embeddings, embed_dim, dtype=self.dtype
)
self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim)
self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype)
self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
......
......@@ -50,7 +50,7 @@ POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -55,8 +55,8 @@ PVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
]
# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False, scale_by_keep=True):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -84,8 +84,8 @@ class SegFormerImageClassifierOutput(ImageClassifierOutput):
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input, drop_prob: float = 0.0, training: bool = False, scale_by_keep=True):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -86,7 +86,7 @@ class SwiftFormerPatchEmbedding(nn.Module):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -380,7 +380,7 @@ class SwinPatchMerging(nn.Module):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
......@@ -105,8 +105,8 @@ def window_reverse(windows, window_size, height, width):
return windows
# Copied from transformers.models.swin.modeling_swin.drop_path
def drop_path(input, drop_prob=0.0, training=False, scale_by_keep=True):
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment