Unverified Commit ef81759e authored by Florian Zimmermeister's avatar Florian Zimmermeister Committed by GitHub
Browse files

[i18n-DE] Complete first toc chapter (#26311)



* initial

* toctree

* add tf model

* run scripts

* peft

* llm and agents

* Update docs/source/de/peft.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/peft.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/run_scripts.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/de/transformers_agents.md
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>

---------
Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
parent 6ae71ec8
...@@ -15,8 +15,24 @@ ...@@ -15,8 +15,24 @@
title: Vorverarbeiten title: Vorverarbeiten
- local: training - local: training
title: Optimierung eines vortrainierten Modells title: Optimierung eines vortrainierten Modells
- local: run_scripts
title: Trainieren mit einem Skript
- local: accelerate - local: accelerate
title: Verteiltes Training mit 🤗 Accelerate title: Verteiltes Training mit 🤗 Accelerate
- local: peft
title: Laden und Trainieren von Adaptern mit 🤗 PEFT
- local: model_sharing - local: model_sharing
title: Ein Modell teilen title: Ein Modell teilen
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials title: Tutorials
- sections:
- local: add_new_model
title: Wie fügt man ein Modell zu 🤗 Transformers hinzu?
- local: add_tensorflow_model
title: Wie konvertiert man ein 🤗 Transformers-Modell in TensorFlow?
- local: add_new_pipeline
title: Wie fügt man eine Pipeline zu 🤗 Transformers hinzu?
title: Contribute
\ No newline at end of file
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie kann ich ein Modell zu 🤗 Transformers hinzufügen?
Die 🤗 Transformers-Bibliothek ist dank der Beiträge der Community oft in der Lage, neue Modelle anzubieten. Aber das kann ein anspruchsvolles Projekt sein und erfordert eine eingehende Kenntnis der 🤗 Transformers-Bibliothek und des zu implementierenden Modells. Bei Hugging Face versuchen wir, mehr Mitgliedern der Community die Möglichkeit zu geben, aktiv Modelle hinzuzufügen, und wir haben diese Anleitung zusammengestellt, die Sie durch den Prozess des Hinzufügens eines PyTorch-Modells führt (stellen Sie sicher, dass Sie [PyTorch installiert haben](https://pytorch.org/get-started/locally/)).
<Tip>
Wenn Sie daran interessiert sind, ein TensorFlow-Modell zu implementieren, werfen Sie einen Blick in die Anleitung [How to convert a 🤗 Transformers model to TensorFlow](add_tensorflow_model)!
</Tip>
Auf dem Weg dorthin, werden Sie:
- Einblicke in bewährte Open-Source-Verfahren erhalten
- die Konstruktionsprinzipien hinter einer der beliebtesten Deep-Learning-Bibliotheken verstehen
- lernen Sie, wie Sie große Modelle effizient testen können
- lernen Sie, wie Sie Python-Hilfsprogramme wie `black`, `ruff` und `make fix-copies` integrieren, um sauberen und lesbaren Code zu gewährleisten
Ein Mitglied des Hugging Face-Teams wird Ihnen dabei zur Seite stehen, damit Sie nicht alleine sind. 🤗 ❤️
Um loszulegen, öffnen Sie eine [New model addition](https://github.com/huggingface/transformers/issues/new?assignees=&labels=New+model&template=new-model-addition.yml) Ausgabe für das Modell, das Sie in 🤗 Transformers sehen möchten. Wenn Sie nicht besonders wählerisch sind, wenn es darum geht, ein bestimmtes Modell beizusteuern, können Sie nach dem [New model label](https://github.com/huggingface/transformers/labels/New%20model) filtern, um zu sehen, ob es noch unbeanspruchte Modellanfragen gibt, und daran arbeiten.
Sobald Sie eine neue Modellanfrage eröffnet haben, sollten Sie sich zunächst mit 🤗 Transformers vertraut machen, falls Sie das noch nicht sind!
## Allgemeiner Überblick über 🤗 Transformers
Zunächst sollten Sie sich einen allgemeinen Überblick über 🤗 Transformers verschaffen. 🤗 Transformers ist eine sehr meinungsfreudige Bibliothek, es ist also möglich, dass
Es besteht also die Möglichkeit, dass Sie mit einigen der Philosophien oder Designentscheidungen der Bibliothek nicht einverstanden sind. Aus unserer Erfahrung heraus haben wir jedoch
dass die grundlegenden Designentscheidungen und Philosophien der Bibliothek entscheidend sind, um 🤗 Transformers effizient zu skalieren.
Transformatoren zu skalieren und gleichzeitig die Wartungskosten auf einem vernünftigen Niveau zu halten.
Ein guter erster Ansatzpunkt, um die Bibliothek besser zu verstehen, ist die Lektüre der [Dokumentation unserer Philosophie](Philosophie). Als Ergebnis unserer Arbeitsweise gibt es einige Entscheidungen, die wir versuchen, auf alle Modelle anzuwenden:
- Komposition wird im Allgemeinen gegenüber Abstraktion bevorzugt
- Die Duplizierung von Code ist nicht immer schlecht, wenn sie die Lesbarkeit oder Zugänglichkeit eines Modells stark verbessert
- Modelldateien sind so in sich geschlossen wie möglich, so dass Sie, wenn Sie den Code eines bestimmten Modells lesen, idealerweise nur
in die entsprechende Datei `modeling_....py` schauen müssen.
Unserer Meinung nach ist der Code der Bibliothek nicht nur ein Mittel, um ein Produkt bereitzustellen, *z.B.* die Möglichkeit, BERT für
Inferenz zu verwenden, sondern auch als das Produkt selbst, das wir verbessern wollen. Wenn Sie also ein Modell hinzufügen, ist der Benutzer nicht nur die
Person, die Ihr Modell verwenden wird, sondern auch jeder, der Ihren Code liest, zu verstehen versucht und ihn möglicherweise verbessert.
Lassen Sie uns daher ein wenig tiefer in das allgemeine Design der Bibliothek einsteigen.
### Überblick über die Modelle
Um ein Modell erfolgreich hinzuzufügen, ist es wichtig, die Interaktion zwischen Ihrem Modell und seiner Konfiguration zu verstehen,
[`PreTrainedModel`] und [`PretrainedConfig`]. Als Beispiel werden wir
das Modell, das zu 🤗 Transformers hinzugefügt werden soll, `BrandNewBert` nennen.
Schauen wir uns das mal an:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png"/>
Wie Sie sehen, machen wir in 🤗 Transformers von der Vererbung Gebrauch, aber wir beschränken die Abstraktionsebene auf ein absolutes Minimum.
Minimum. Es gibt nie mehr als zwei Abstraktionsebenen für ein Modell in der Bibliothek. `BrandNewBertModel`
erbt von `BrandNewBertPreTrainedModel`, das wiederum von [`PreTrainedModel`] erbt und
das war's. In der Regel wollen wir sicherstellen, dass ein neues Modell nur von
[`PreTrainedModel`] abhängt. Die wichtigen Funktionalitäten, die jedem neuen Modell automatisch zur Verfügung gestellt werden, sind
Modell automatisch bereitgestellt werden, sind [`~PreTrainedModel.from_pretrained`] und
[`~PreTrainedModel.save_pretrained`], die für die Serialisierung und Deserialisierung verwendet werden. Alle
anderen wichtigen Funktionalitäten, wie `BrandNewBertModel.forward` sollten vollständig in der neuen
Skript `modeling_brand_new_bert.py` definiert werden. Als nächstes wollen wir sicherstellen, dass ein Modell mit einer bestimmten Kopfebene, wie z.B.
`BrandNewBertForMaskedLM` nicht von `BrandNewBertModel` erbt, sondern `BrandNewBertModel` verwendet
als Komponente, die im Forward Pass aufgerufen werden kann, um die Abstraktionsebene niedrig zu halten. Jedes neue Modell erfordert eine
Konfigurationsklasse, genannt `BrandNewBertConfig`. Diese Konfiguration wird immer als ein Attribut in
[PreTrainedModel] gespeichert und kann daher über das Attribut `config` für alle Klassen aufgerufen werden
die von `BrandNewBertPreTrainedModel` erben:
```python
model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert")
model.config # model has access to its config
```
Ähnlich wie das Modell erbt die Konfiguration grundlegende Serialisierungs- und Deserialisierungsfunktionalitäten von
[`PretrainedConfig`]. Beachten Sie, dass die Konfiguration und das Modell immer in zwei verschiedene Formate serialisiert werden
unterschiedliche Formate serialisiert werden - das Modell in eine *pytorch_model.bin* Datei und die Konfiguration in eine *config.json* Datei. Aufruf von
[~PreTrainedModel.save_pretrained`] wird automatisch
[~PretrainedConfig.save_pretrained`] auf, so dass sowohl das Modell als auch die Konfiguration gespeichert werden.
### Code-Stil
Wenn Sie Ihr neues Modell kodieren, sollten Sie daran denken, dass Transformers eine Bibliothek mit vielen Meinungen ist und dass wir selbst ein paar Macken haben
wie der Code geschrieben werden sollte :-)
1. Der Vorwärtsdurchlauf Ihres Modells sollte vollständig in die Modellierungsdatei geschrieben werden und dabei völlig unabhängig von anderen
Modellen in der Bibliothek. Wenn Sie einen Block aus einem anderen Modell wiederverwenden möchten, kopieren Sie den Code und fügen ihn mit einem
`# Kopiert von` ein (siehe [hier](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from).
2. Der Code sollte vollständig verständlich sein, auch für einen Nicht-Muttersprachler. Das heißt, Sie sollten
beschreibende Variablennamen wählen und Abkürzungen vermeiden. Ein Beispiel: `activation` ist `act` vorzuziehen.
Von Variablennamen mit nur einem Buchstaben wird dringend abgeraten, es sei denn, es handelt sich um einen Index in einer for-Schleife.
3. Generell ziehen wir längeren expliziten Code einem kurzen magischen Code vor.
4. Vermeiden Sie die Unterklassifizierung von `nn.Sequential` in PyTorch, sondern unterklassifizieren Sie `nn.Module` und schreiben Sie den Vorwärtspass, so dass jeder
so dass jeder, der Ihren Code verwendet, ihn schnell debuggen kann, indem er Druckanweisungen oder Haltepunkte hinzufügt.
5. Ihre Funktionssignatur sollte mit einer Typ-Annotation versehen sein. Im Übrigen sind gute Variablennamen viel lesbarer und verständlicher
verständlicher als Typ-Anmerkungen.
### Übersicht der Tokenizer
Noch nicht ganz fertig :-( Dieser Abschnitt wird bald hinzugefügt!
## Schritt-für-Schritt-Rezept zum Hinzufügen eines Modells zu 🤗 Transformers
Jeder hat andere Vorlieben, was die Portierung eines Modells angeht. Daher kann es sehr hilfreich sein, wenn Sie sich Zusammenfassungen ansehen
wie andere Mitwirkende Modelle auf Hugging Face portiert haben. Hier ist eine Liste von Blogbeiträgen aus der Community, wie man ein Modell portiert:
1. [Portierung eines GPT2-Modells](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) von [Thomas](https://huggingface.co/thomwolf)
2. [Portierung des WMT19 MT-Modells](https://huggingface.co/blog/porting-fsmt) von [Stas](https://huggingface.co/stas)
Aus Erfahrung können wir Ihnen sagen, dass die wichtigsten Dinge, die Sie beim Hinzufügen eines Modells beachten müssen, sind:
- Erfinden Sie das Rad nicht neu! Die meisten Teile des Codes, den Sie für das neue 🤗 Transformers-Modell hinzufügen werden, existieren bereits
irgendwo in 🤗 Transformers. Nehmen Sie sich etwas Zeit, um ähnliche, bereits vorhandene Modelle und Tokenizer zu finden, die Sie kopieren können
von. [grep](https://www.gnu.org/software/grep/) und [rg](https://github.com/BurntSushi/ripgrep) sind Ihre
Freunde. Beachten Sie, dass es sehr gut möglich ist, dass der Tokenizer Ihres Modells auf einer Modellimplementierung basiert und
und der Modellierungscode Ihres Modells auf einer anderen. *Z.B.* Der Modellierungscode von FSMT basiert auf BART, während der Tokenizer-Code von FSMT
auf XLM basiert.
- Es handelt sich eher um eine technische als um eine wissenschaftliche Herausforderung. Sie sollten mehr Zeit auf die Schaffung einer
eine effiziente Debugging-Umgebung zu schaffen, als zu versuchen, alle theoretischen Aspekte des Modells in dem Papier zu verstehen.
- Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Modelle sind der Kernbestandteil von 🤗 Transformers, so dass wir bei Hugging Face mehr als
mehr als glücklich, Ihnen bei jedem Schritt zu helfen, um Ihr Modell hinzuzufügen. Zögern Sie nicht zu fragen, wenn Sie merken, dass Sie nicht weiterkommen.
Fortschritte machen.
Im Folgenden versuchen wir, Ihnen ein allgemeines Rezept an die Hand zu geben, das uns bei der Portierung eines Modells auf 🤗 Transformers am nützlichsten erschien.
Die folgende Liste ist eine Zusammenfassung all dessen, was getan werden muss, um ein Modell hinzuzufügen und kann von Ihnen als To-Do verwendet werden
Liste verwenden:
☐ (Optional) Verstehen der theoretischen Aspekte des Modells<br>
☐ Vorbereiten der 🤗 Transformers-Entwicklungsumgebung<br>
☐ Debugging-Umgebung des ursprünglichen Repositorys eingerichtet<br>
☐ Skript erstellt, das den Durchlauf `forward()` unter Verwendung des ursprünglichen Repositorys und des Checkpoints erfolgreich durchführt<br>
☐ Erfolgreich das Modellskelett zu 🤗 Transformers hinzugefügt<br>
☐ Erfolgreiche Umwandlung des ursprünglichen Prüfpunkts in den 🤗 Transformers-Prüfpunkt<br>
☐ Erfolgreich den Durchlauf `forward()` in 🤗 Transformers ausgeführt, der eine identische Ausgabe wie der ursprüngliche Prüfpunkt liefert<br>
☐ Modell-Tests in 🤗 Transformers abgeschlossen<br>
☐ Erfolgreich Tokenizer in 🤗 Transformers hinzugefügt<br>
☐ End-to-End-Integrationstests ausgeführt<br>
☐ Docs fertiggestellt<br>
☐ Modellgewichte in den Hub hochgeladen<br>
☐ Die Pull-Anfrage eingereicht<br>
☐ (Optional) Hinzufügen eines Demo-Notizbuchs
Für den Anfang empfehlen wir in der Regel, mit einem guten theoretischen Verständnis von `BrandNewBert` zu beginnen. Wie auch immer,
wenn Sie es vorziehen, die theoretischen Aspekte des Modells *on-the-job* zu verstehen, dann ist es völlig in Ordnung, direkt in die
in die Code-Basis von `BrandNewBert` einzutauchen. Diese Option könnte für Sie besser geeignet sein, wenn Ihre technischen Fähigkeiten besser sind als
als Ihre theoretischen Fähigkeiten, wenn Sie Schwierigkeiten haben, die Arbeit von `BrandNewBert` zu verstehen, oder wenn Sie einfach Spaß am Programmieren
mehr Spaß am Programmieren haben als am Lesen wissenschaftlicher Abhandlungen.
### 1. (Optional) Theoretische Aspekte von BrandNewBert
Sie sollten sich etwas Zeit nehmen, um die Abhandlung von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große
Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist
ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um
das Modell effektiv in 🤗 Transformers zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die
theoretischen Aspekten verbringen, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich:
- Welche Art von Modell ist *brand_new_bert*? BERT-ähnliches Modell nur für den Encoder? GPT2-ähnliches reines Decoder-Modell? BART-ähnliches
Encoder-Decoder-Modell? Sehen Sie sich die [model_summary](model_summary) an, wenn Sie mit den Unterschieden zwischen diesen Modellen nicht vertraut sind.
- Was sind die Anwendungen von *brand_new_bert*? Textklassifizierung? Texterzeugung? Seq2Seq-Aufgaben, *z.B.,*
Zusammenfassungen?
- Was ist die neue Eigenschaft des Modells, die es von BERT/GPT-2/BART unterscheidet?
- Welches der bereits existierenden [🤗 Transformers-Modelle](https://huggingface.co/transformers/#contents) ist am ähnlichsten
ähnlich wie *brand_new_bert*?
- Welche Art von Tokenizer wird verwendet? Ein Satzteil-Tokenisierer? Ein Wortstück-Tokenisierer? Ist es derselbe Tokenisierer, der für
für BERT oder BART?
Nachdem Sie das Gefühl haben, einen guten Überblick über die Architektur des Modells erhalten zu haben, können Sie dem
Hugging Face Team schreiben und Ihre Fragen stellen. Dazu können Fragen zur Architektur des Modells gehören,
seiner Aufmerksamkeitsebene usw. Wir werden Ihnen gerne weiterhelfen.
### 2. Bereiten Sie als nächstes Ihre Umgebung vor
1. Forken Sie das [Repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken.
Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt.
2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen
Fehler mit diesem Befehl. Stellen Sie in diesem Fall sicher, dass Sie das Deep Learning Framework, mit dem Sie arbeiten, installieren
(PyTorch, TensorFlow und/oder Flax) und führen Sie es aus:
```bash
pip install -e ".[quality]"
```
was für die meisten Anwendungsfälle ausreichend sein sollte. Sie können dann zum übergeordneten Verzeichnis zurückkehren
```bash
cd ..
```
4. Wir empfehlen, die PyTorch-Version von *brand_new_bert* zu Transformers hinzuzufügen. Um PyTorch zu installieren, folgen Sie bitte den
Anweisungen auf https://pytorch.org/get-started/locally/.
**Anmerkung:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU zum Laufen zu bringen.
5. Um *brand_new_bert* zu portieren, benötigen Sie außerdem Zugriff auf das Original-Repository:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *brand_new_bert* auf 🤗 Transformers zu portieren.
### 3.-4. Führen Sie einen Pre-Training-Checkpoint mit dem Original-Repository durch
Zunächst werden Sie mit dem ursprünglichen *brand_new_bert* Repository arbeiten. Oft ist die ursprüngliche Implementierung sehr
"forschungslastig". Das bedeutet, dass es an Dokumentation mangeln kann und der Code schwer zu verstehen sein kann. Aber das sollte
genau Ihre Motivation sein, *brand_new_bert* neu zu implementieren. Eines unserer Hauptziele bei Hugging Face ist es, *die Menschen dazu zu bringen
auf den Schultern von Giganten zu stehen*, was sich hier sehr gut darin ausdrückt, dass wir ein funktionierendes Modell nehmen und es umschreiben, um es so
es so **zugänglich, benutzerfreundlich und schön** wie möglich zu machen. Dies ist die wichtigste Motivation für die Neuimplementierung von
Modelle in 🤗 Transformers umzuwandeln - der Versuch, komplexe neue NLP-Technologie für **jeden** zugänglich zu machen.
Sie sollten damit beginnen, indem Sie in das Original-Repository eintauchen.
Die erfolgreiche Ausführung des offiziellen Pre-Trainingsmodells im Original-Repository ist oft **der schwierigste** Schritt.
Unserer Erfahrung nach ist es sehr wichtig, dass Sie einige Zeit damit verbringen, sich mit der ursprünglichen Code-Basis vertraut zu machen. Sie müssen
das Folgende herausfinden:
- Wo finden Sie die vortrainierten Gewichte?
- Wie lädt man die vorab trainierten Gewichte in das entsprechende Modell?
- Wie kann der Tokenizer unabhängig vom Modell ausgeführt werden?
- Verfolgen Sie einen Forward Pass, damit Sie wissen, welche Klassen und Funktionen für einen einfachen Forward Pass erforderlich sind. Normalerweise,
müssen Sie nur diese Funktionen reimplementieren.
- Sie müssen in der Lage sein, die wichtigen Komponenten des Modells zu finden: Wo befindet sich die Klasse des Modells? Gibt es Unterklassen des Modells,
*z.B.* EncoderModel, DecoderModel? Wo befindet sich die Selbstaufmerksamkeitsschicht? Gibt es mehrere verschiedene Aufmerksamkeitsebenen,
*z.B.* *Selbstaufmerksamkeit*, *Kreuzaufmerksamkeit*...?
- Wie können Sie das Modell in der ursprünglichen Umgebung des Repo debuggen? Müssen Sie *print* Anweisungen hinzufügen, können Sie
mit einem interaktiven Debugger wie *ipdb* arbeiten oder sollten Sie eine effiziente IDE zum Debuggen des Modells verwenden, wie z.B. PyCharm?
Es ist sehr wichtig, dass Sie, bevor Sie mit der Portierung beginnen, den Code im Original-Repository **effizient** debuggen können
Repository können! Denken Sie auch daran, dass Sie mit einer Open-Source-Bibliothek arbeiten, also zögern Sie nicht, ein Problem oder
oder sogar eine Pull-Anfrage im Original-Repository zu stellen. Die Betreuer dieses Repositorys sind wahrscheinlich sehr froh darüber
dass jemand in ihren Code schaut!
An diesem Punkt liegt es wirklich an Ihnen, welche Debugging-Umgebung und Strategie Sie zum Debuggen des ursprünglichen
Modell zu debuggen. Wir raten dringend davon ab, eine kostspielige GPU-Umgebung einzurichten, sondern arbeiten Sie einfach auf einer CPU, sowohl wenn Sie mit dem
in das ursprüngliche Repository einzutauchen und auch, wenn Sie beginnen, die 🤗 Transformers-Implementierung des Modells zu schreiben. Nur
ganz am Ende, wenn das Modell bereits erfolgreich auf 🤗 Transformers portiert wurde, sollte man überprüfen, ob das
Modell auch auf der GPU wie erwartet funktioniert.
Im Allgemeinen gibt es zwei mögliche Debugging-Umgebungen für die Ausführung des Originalmodells
- [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb)
- Lokale Python-Skripte.
Jupyter-Notebooks haben den Vorteil, dass sie eine zellenweise Ausführung ermöglichen, was hilfreich sein kann, um logische Komponenten besser voneinander zu trennen und
logische Komponenten voneinander zu trennen und schnellere Debugging-Zyklen zu haben, da Zwischenergebnisse gespeichert werden können. Außerdem,
Außerdem lassen sich Notebooks oft leichter mit anderen Mitwirkenden teilen, was sehr hilfreich sein kann, wenn Sie das Hugging Face Team um Hilfe bitten möchten.
Face Team um Hilfe bitten. Wenn Sie mit Jupyter-Notizbüchern vertraut sind, empfehlen wir Ihnen dringend, mit ihnen zu arbeiten.
Der offensichtliche Nachteil von Jupyter-Notizbüchern ist, dass Sie, wenn Sie nicht daran gewöhnt sind, mit ihnen zu arbeiten, einige Zeit damit verbringen müssen
einige Zeit damit verbringen müssen, sich an die neue Programmierumgebung zu gewöhnen, und dass Sie möglicherweise Ihre bekannten Debugging-Tools nicht mehr verwenden können
wie z.B. `ipdb` nicht mehr verwenden können.
Für jede Codebasis ist es immer ein guter erster Schritt, einen **kleinen** vortrainierten Checkpoint zu laden und in der Lage zu sein, einen
einzelnen Vorwärtsdurchlauf mit einem Dummy-Integer-Vektor von Eingabe-IDs als Eingabe zu reproduzieren. Ein solches Skript könnte wie folgt aussehen (in
Pseudocode):
```python
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids
original_output = model.predict(input_ids)
```
Was die Debugging-Strategie anbelangt, so können Sie im Allgemeinen aus mehreren Strategien wählen:
- Zerlegen Sie das ursprüngliche Modell in viele kleine testbare Komponenten und führen Sie für jede dieser Komponenten einen Vorwärtsdurchlauf zur
Überprüfung
- Zerlegen Sie das ursprüngliche Modell nur in den ursprünglichen *Tokenizer* und das ursprüngliche *Modell*, führen Sie einen Vorwärtsdurchlauf für diese Komponenten durch
und verwenden Sie dazwischenliegende Druckanweisungen oder Haltepunkte zur Überprüfung.
Auch hier bleibt es Ihnen überlassen, welche Strategie Sie wählen. Oft ist die eine oder die andere Strategie vorteilhaft, je nach der ursprünglichen Codebasis
Basis.
Wenn die ursprüngliche Codebasis es Ihnen erlaubt, das Modell in kleinere Teilkomponenten zu zerlegen, *z.B.* wenn die ursprüngliche
Code-Basis problemlos im Eager-Modus ausgeführt werden kann, lohnt es sich in der Regel, dies zu tun. Es gibt einige wichtige Vorteile
am Anfang den schwierigeren Weg zu gehen:
- Wenn Sie später das ursprüngliche Modell mit der Hugging Face-Implementierung vergleichen, können Sie automatisch überprüfen, ob
für jede Komponente einzeln überprüfen, ob die entsprechende Komponente der 🤗 Transformers-Implementierung übereinstimmt, anstatt sich auf
anstatt sich auf den visuellen Vergleich über Druckanweisungen zu verlassen
- können Sie das große Problem der Portierung eines Modells in kleinere Probleme der Portierung einzelner Komponenten zerlegen
einzelnen Komponenten zu zerlegen und so Ihre Arbeit besser zu strukturieren
- Die Aufteilung des Modells in logisch sinnvolle Komponenten hilft Ihnen, einen besseren Überblick über das Design des Modells zu bekommen
und somit das Modell besser zu verstehen
- In einem späteren Stadium helfen Ihnen diese komponentenweisen Tests dabei, sicherzustellen, dass keine Regressionen auftreten, während Sie fortfahren
Ihren Code ändern
[Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) Integrationstests für ELECTRA
gibt ein schönes Beispiel dafür, wie dies geschehen kann.
Wenn die ursprüngliche Codebasis jedoch sehr komplex ist oder nur die Ausführung von Zwischenkomponenten in einem kompilierten Modus erlaubt,
könnte es zu zeitaufwändig oder sogar unmöglich sein, das Modell in kleinere testbare Teilkomponenten zu zerlegen. Ein gutes
Beispiel ist die [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) Bibliothek, die sehr komplex ist
sehr komplex ist und keine einfache Möglichkeit bietet, das Modell in seine Unterkomponenten zu zerlegen. Bei solchen Bibliotheken ist man
oft auf die Überprüfung von Druckanweisungen angewiesen.
Unabhängig davon, welche Strategie Sie wählen, ist die empfohlene Vorgehensweise oft die gleiche, nämlich dass Sie mit der Fehlersuche in den
die Anfangsebenen zuerst und die Endebenen zuletzt debuggen.
Es wird empfohlen, dass Sie die Ausgaben der folgenden Ebenen abrufen, entweder durch Druckanweisungen oder Unterkomponentenfunktionen
Schichten in der folgenden Reihenfolge abrufen:
1. Rufen Sie die Eingabe-IDs ab, die an das Modell übergeben wurden
2. Rufen Sie die Worteinbettungen ab
3. Rufen Sie die Eingabe der ersten Transformer-Schicht ab
4. Rufen Sie die Ausgabe der ersten Transformer-Schicht ab
5. Rufen Sie die Ausgabe der folgenden n - 1 Transformer-Schichten ab
6. Rufen Sie die Ausgabe des gesamten BrandNewBert Modells ab
Die Eingabe-IDs sollten dabei aus einem Array von Ganzzahlen bestehen, *z.B.* `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]`
Die Ausgaben der folgenden Schichten bestehen oft aus mehrdimensionalen Float-Arrays und können wie folgt aussehen:
```
[[
[-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024],
[-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132],
[-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648],
...,
[-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288],
[-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191],
[-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]],
```
Wir erwarten, dass jedes zu 🤗 Transformers hinzugefügte Modell eine Reihe von Integrationstests besteht, was bedeutet, dass das ursprüngliche
Modell und die neu implementierte Version in 🤗 Transformers exakt dieselbe Ausgabe liefern müssen, und zwar mit einer Genauigkeit von 0,001!
Da es normal ist, dass das exakt gleiche Modell, das in verschiedenen Bibliotheken geschrieben wurde, je nach Bibliotheksrahmen eine leicht unterschiedliche Ausgabe liefern kann
eine leicht unterschiedliche Ausgabe liefern kann, akzeptieren wir eine Fehlertoleranz von 1e-3 (0,001). Es reicht nicht aus, wenn das Modell
fast das gleiche Ergebnis liefert, sie müssen fast identisch sein. Daher werden Sie sicherlich die Zwischenergebnisse
Zwischenergebnisse der 🤗 Transformers-Version mehrfach mit den Zwischenergebnissen der ursprünglichen Implementierung von
*brand_new_bert* vergleichen. In diesem Fall ist eine **effiziente** Debugging-Umgebung des ursprünglichen Repositorys absolut
wichtig ist. Hier sind einige Ratschläge, um Ihre Debugging-Umgebung so effizient wie möglich zu gestalten.
- Finden Sie den besten Weg, um Zwischenergebnisse zu debuggen. Ist das ursprüngliche Repository in PyTorch geschrieben? Dann sollten Sie
dann sollten Sie sich wahrscheinlich die Zeit nehmen, ein längeres Skript zu schreiben, das das ursprüngliche Modell in kleinere Unterkomponenten zerlegt, um
Zwischenwerte abzurufen. Ist das ursprüngliche Repository in Tensorflow 1 geschrieben? Dann müssen Sie sich möglicherweise auf die
TensorFlow Druckoperationen wie [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) verlassen, um die
Zwischenwerte auszugeben. Ist das ursprüngliche Repository in Jax geschrieben? Dann stellen Sie sicher, dass das Modell **nicht jitted** ist, wenn
wenn Sie den Vorwärtsdurchlauf ausführen, *z.B.* schauen Sie sich [dieser Link](https://github.com/google/jax/issues/196) an.
- Verwenden Sie den kleinsten vortrainierten Prüfpunkt, den Sie finden können. Je kleiner der Prüfpunkt ist, desto schneller wird Ihr Debugging-Zyklus
wird. Es ist nicht effizient, wenn Ihr vorab trainiertes Modell so groß ist, dass Ihr Vorwärtsdurchlauf mehr als 10 Sekunden dauert.
Falls nur sehr große Checkpoints verfügbar sind, kann es sinnvoller sein, ein Dummy-Modell in der neuen
Umgebung mit zufällig initialisierten Gewichten zu erstellen und diese Gewichte zum Vergleich mit der 🤗 Transformers-Version
Ihres Modells
- Vergewissern Sie sich, dass Sie den einfachsten Weg wählen, um einen Forward Pass im ursprünglichen Repository aufzurufen. Idealerweise sollten Sie
die Funktion im originalen Repository finden, die **nur** einen einzigen Vorwärtspass aufruft, *d.h.* die oft aufgerufen wird
Vorhersagen", "Auswerten", "Vorwärts" oder "Aufruf" genannt wird. Sie wollen keine Funktion debuggen, die `forward` aufruft
mehrfach aufruft, *z.B.* um Text zu erzeugen, wie `autoregressive_sample`, `generate`.
- Versuchen Sie, die Tokenisierung vom *Forward*-Pass des Modells zu trennen. Wenn das Original-Repository Beispiele zeigt, bei denen
Sie eine Zeichenkette eingeben müssen, dann versuchen Sie herauszufinden, an welcher Stelle im Vorwärtsaufruf die Zeichenketteneingabe in Eingabe-IDs geändert wird
geändert wird und beginnen Sie an dieser Stelle. Das könnte bedeuten, dass Sie möglicherweise selbst ein kleines Skript schreiben oder den
Originalcode so ändern müssen, dass Sie die ids direkt eingeben können, anstatt eine Zeichenkette einzugeben.
- Vergewissern Sie sich, dass sich das Modell in Ihrem Debugging-Setup **nicht** im Trainingsmodus befindet, der oft dazu führt, dass das Modell
Dies führt häufig zu zufälligen Ergebnissen, da das Modell mehrere Dropout-Schichten enthält. Stellen Sie sicher, dass der Vorwärtsdurchlauf in Ihrer Debugging
Umgebung **deterministisch** ist, damit die Dropout-Schichten nicht verwendet werden. Oder verwenden Sie *transformers.utils.set_seed*.
wenn sich die alte und die neue Implementierung im selben Framework befinden.
Im folgenden Abschnitt finden Sie genauere Details/Tipps, wie Sie dies für *brand_new_bert* tun können.
### 5.-14. Portierung von BrandNewBert auf 🤗 Transformatoren
Als nächstes können Sie endlich damit beginnen, neuen Code zu 🤗 Transformers hinzuzufügen. Gehen Sie in den Klon Ihres 🤗 Transformers Forks:
```bash
cd transformers
```
In dem speziellen Fall, dass Sie ein Modell hinzufügen, dessen Architektur genau mit der Modellarchitektur eines
Modells übereinstimmt, müssen Sie nur ein Konvertierungsskript hinzufügen, wie in [diesem Abschnitt](#write-a-conversion-script) beschrieben.
In diesem Fall können Sie einfach die gesamte Modellarchitektur des bereits vorhandenen Modells wiederverwenden.
Andernfalls beginnen wir mit der Erstellung eines neuen Modells. Sie haben hier zwei Möglichkeiten:
- `transformers-cli add-new-model-like`, um ein neues Modell wie ein bestehendes hinzuzufügen
- `transformers-cli add-new-model`, um ein neues Modell aus unserer Vorlage hinzuzufügen (sieht dann aus wie BERT oder Bart, je nachdem, welche Art von Modell Sie wählen)
In beiden Fällen werden Sie mit einem Fragebogen aufgefordert, die grundlegenden Informationen zu Ihrem Modell auszufüllen. Für den zweiten Befehl müssen Sie `cookiecutter` installieren, weitere Informationen dazu finden Sie [hier](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
**Eröffnen Sie einen Pull Request auf dem Haupt-Repositorium huggingface/transformers**
Bevor Sie mit der Anpassung des automatisch generierten Codes beginnen, ist es nun an der Zeit, einen "Work in progress (WIP)" Pull
Anfrage, *z.B.* "[WIP] Add *brand_new_bert*", in 🤗 Transformers zu öffnen, damit Sie und das Hugging Face Team
Seite an Seite an der Integration des Modells in 🤗 Transformers arbeiten können.
Sie sollten Folgendes tun:
1. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung
```bash
git checkout -b add_brand_new_bert
```
2. Bestätigen Sie den automatisch generierten Code:
```bash
git add .
git commit
```
3. Abrufen und zurücksetzen auf die aktuelle Haupt
```bash
git fetch upstream
git rebase upstream/main
```
4. Übertragen Sie die Änderungen auf Ihr Konto mit:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
5. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das
GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird.
zukünftige Änderungen benachrichtigt wird.
6. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken.
Vergessen Sie im Folgenden nicht, wenn Sie Fortschritte gemacht haben, Ihre Arbeit zu committen und in Ihr Konto zu pushen, damit sie in der Pull-Anfrage erscheint.
damit sie in der Pull-Anfrage angezeigt wird. Außerdem sollten Sie darauf achten, dass Sie Ihre Arbeit von Zeit zu Zeit mit dem aktuellen main
von Zeit zu Zeit zu aktualisieren, indem Sie dies tun:
```bash
git fetch upstream
git merge upstream/main
```
Generell sollten Sie alle Fragen, die Sie in Bezug auf das Modell oder Ihre Implementierung haben, in Ihrem PR stellen und
in der PR diskutiert/gelöst werden. Auf diese Weise wird das Hugging Face Team immer benachrichtigt, wenn Sie neuen Code einreichen oder
wenn Sie eine Frage haben. Es ist oft sehr hilfreich, das Hugging Face-Team auf Ihren hinzugefügten Code hinzuweisen, damit das Hugging Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Face-Team Ihr Problem oder Ihre Frage besser verstehen kann.
Gehen Sie dazu auf die Registerkarte "Geänderte Dateien", auf der Sie alle Ihre Änderungen sehen, gehen Sie zu einer Zeile, zu der Sie eine Frage stellen möchten
eine Frage stellen möchten, und klicken Sie auf das "+"-Symbol, um einen Kommentar hinzuzufügen. Wenn eine Frage oder ein Problem gelöst wurde,
können Sie auf die Schaltfläche "Lösen" des erstellten Kommentars klicken.
Auf dieselbe Weise wird das Hugging Face-Team Kommentare öffnen, wenn es Ihren Code überprüft. Wir empfehlen, die meisten Fragen
auf GitHub in Ihrem PR zu stellen. Für einige sehr allgemeine Fragen, die für die Öffentlichkeit nicht sehr nützlich sind, können Sie das
Hugging Face Team per Slack oder E-Mail zu stellen.
**5. Passen Sie den Code der generierten Modelle für brand_new_bert** an.
Zunächst werden wir uns nur auf das Modell selbst konzentrieren und uns nicht um den Tokenizer kümmern. Den gesamten relevanten Code sollten Sie
finden Sie in den generierten Dateien `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` und
`src/transformers/models/brand_new_bert/configuration_brand_new_bert.py`.
Jetzt können Sie endlich mit dem Programmieren beginnen :). Der generierte Code in
`src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` wird entweder die gleiche Architektur wie BERT haben, wenn
wenn es sich um ein reines Encoder-Modell handelt oder BART, wenn es sich um ein Encoder-Decoder-Modell handelt. An diesem Punkt sollten Sie sich daran erinnern, was
was Sie am Anfang über die theoretischen Aspekte des Modells gelernt haben: *Wie unterscheidet sich das Modell von BERT oder
BART?*". Implementieren Sie diese Änderungen, was oft bedeutet, dass Sie die *Selbstaufmerksamkeitsschicht*, die Reihenfolge der Normalisierungsschicht usw. ändern müssen.
Schicht usw... Auch hier ist es oft nützlich, sich die ähnliche Architektur bereits bestehender Modelle in Transformers anzusehen, um ein besseres Gefühl dafür zu bekommen
ein besseres Gefühl dafür zu bekommen, wie Ihr Modell implementiert werden sollte.
**Beachten Sie**, dass Sie an diesem Punkt nicht sehr sicher sein müssen, dass Ihr Code völlig korrekt oder sauber ist. Vielmehr ist es
Sie sollten vielmehr eine erste *unbereinigte*, kopierte Version des ursprünglichen Codes in
src/transformers/models/brand_new_bert/modeling_brand_new_bert.py" hinzuzufügen, bis Sie das Gefühl haben, dass der gesamte notwendige Code
hinzugefügt wurde. Unserer Erfahrung nach ist es viel effizienter, schnell eine erste Version des erforderlichen Codes hinzuzufügen und
den Code iterativ mit dem Konvertierungsskript zu verbessern/korrigieren, wie im nächsten Abschnitt beschrieben. Das einzige, was
zu diesem Zeitpunkt funktionieren muss, ist, dass Sie die 🤗 Transformers-Implementierung von *brand_new_bert* instanziieren können, *d.h.* der
folgende Befehl sollte funktionieren:
```python
from transformers import BrandNewBertModel, BrandNewBertConfig
model = BrandNewBertModel(BrandNewBertConfig())
```
Der obige Befehl erstellt ein Modell gemäß den Standardparametern, die in `BrandNewBertConfig()` definiert sind, mit
zufälligen Gewichten und stellt damit sicher, dass die `init()` Methoden aller Komponenten funktionieren.
Beachten Sie, dass alle zufälligen Initialisierungen in der Methode `_init_weights` Ihres `BrandnewBertPreTrainedModel` stattfinden sollten.
Klasse erfolgen sollte. Sie sollte alle Blattmodule in Abhängigkeit von den Variablen der Konfiguration initialisieren. Hier ist ein Beispiel mit der
BERT `_init_weights` Methode:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
```
Sie können weitere benutzerdefinierte Schemata verwenden, wenn Sie eine spezielle Initialisierung für einige Module benötigen. Zum Beispiel in
`Wav2Vec2ForPreTraining` müssen die letzten beiden linearen Schichten die Initialisierung des regulären PyTorch `nn.Linear` haben.
aber alle anderen sollten eine Initialisierung wie oben verwenden. Dies ist wie folgt kodiert:
```py
def _init_weights(self, module):
"""Initialize the weights"""
if isinstnace(module, Wav2Vec2ForPreTraining):
module.project_hid.reset_parameters()
module.project_q.reset_parameters()
module.project_hid._is_hf_initialized = True
module.project_q._is_hf_initialized = True
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
```
Das Flag `_is_hf_initialized` wird intern verwendet, um sicherzustellen, dass wir ein Submodul nur einmal initialisieren. Wenn Sie es auf
True` für `module.project_q` und `module.project_hid` setzen, stellen wir sicher, dass die benutzerdefinierte Initialisierung, die wir vorgenommen haben, später nicht überschrieben wird,
die Funktion `_init_weights` nicht auf sie angewendet wird.
**6. Schreiben Sie ein Konvertierungsskript**
Als nächstes sollten Sie ein Konvertierungsskript schreiben, mit dem Sie den Checkpoint, den Sie zum Debuggen von *brand_new_bert* im
im ursprünglichen Repository in einen Prüfpunkt konvertieren, der mit Ihrer gerade erstellten 🤗 Transformers-Implementierung von
*brand_new_bert*. Es ist nicht ratsam, das Konvertierungsskript von Grund auf neu zu schreiben, sondern die bereits
bestehenden Konvertierungsskripten in 🤗 Transformers nach einem Skript zu suchen, das für die Konvertierung eines ähnlichen Modells verwendet wurde, das im
demselben Framework wie *brand_new_bert* geschrieben wurde. Normalerweise reicht es aus, ein bereits vorhandenes Konvertierungsskript zu kopieren und
es für Ihren Anwendungsfall leicht anzupassen. Zögern Sie nicht, das Hugging Face Team zu bitten, Sie auf ein ähnliches, bereits vorhandenes
Konvertierungsskript für Ihr Modell zu finden.
- Wenn Sie ein Modell von TensorFlow nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BERT [hier] (https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- Wenn Sie ein Modell von PyTorch nach PyTorch portieren, ist ein guter Ausgangspunkt das Konvertierungsskript von BART [hier](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
Im Folgenden werden wir kurz erklären, wie PyTorch-Modelle Ebenengewichte speichern und Ebenennamen definieren. In PyTorch wird der
Name einer Ebene durch den Namen des Klassenattributs definiert, das Sie der Ebene geben. Lassen Sie uns ein Dummy-Modell in
PyTorch, das wir `SimpleModel` nennen, wie folgt:
```python
from torch import nn
class SimpleModel(nn.Module):
def __init__(self):
super().__init__()
self.dense = nn.Linear(10, 10)
self.intermediate = nn.Linear(10, 10)
self.layer_norm = nn.LayerNorm(10)
```
Jetzt können wir eine Instanz dieser Modelldefinition erstellen, die alle Gewichte ausfüllt: `dense`, `intermediate`,
`layer_norm` mit zufälligen Gewichten. Wir können das Modell ausdrucken, um seine Architektur zu sehen
```python
model = SimpleModel()
print(model)
```
Dies gibt folgendes aus:
```
SimpleModel(
(dense): Linear(in_features=10, out_features=10, bias=True)
(intermediate): Linear(in_features=10, out_features=10, bias=True)
(layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True)
)
```
Wir können sehen, dass die Ebenennamen durch den Namen des Klassenattributs in PyTorch definiert sind. Sie können die Gewichtswerte
Werte einer bestimmten Ebene anzeigen lassen:
```python
print(model.dense.weight.data)
```
um zu sehen, dass die Gewichte zufällig initialisiert wurden
```
tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212,
-0.2077, 0.2157],
[ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190,
0.2166, -0.0212],
[-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950,
-0.1023, -0.0447],
[-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415,
-0.1876, -0.2467],
[ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465,
0.2577, 0.0402],
[ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604,
0.2132, 0.1680],
[ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090,
0.2707, -0.2509],
[-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407,
0.1829, -0.1568],
[-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923,
0.0333, -0.0536],
[-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739,
0.2220, 0.2358]]).
```
Im Konvertierungsskript sollten Sie diese zufällig initialisierten Gewichte mit den genauen Gewichten der
entsprechenden Ebene im Kontrollpunkt. *Z.B.*
```python
# retrieve matching layer weights, e.g. by
# recursive algorithm
layer_name = "dense"
pretrained_weight = array_of_dense_layer
model_pointer = getattr(model, "dense")
model_pointer.weight.data = torch.from_numpy(pretrained_weight)
```
Dabei müssen Sie sicherstellen, dass jedes zufällig initialisierte Gewicht Ihres PyTorch-Modells und sein entsprechendes
Checkpoint-Gewicht in **Form und Name** genau übereinstimmen. Zu diesem Zweck ist es **notwendig**, assert
Anweisungen für die Form hinzuzufügen und die Namen der Checkpoint-Gewichte auszugeben. Sie sollten z.B. Anweisungen hinzufügen wie:
```python
assert (
model_pointer.weight.shape == pretrained_weight.shape
), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched"
```
Außerdem sollten Sie die Namen der beiden Gewichte ausdrucken, um sicherzustellen, dass sie übereinstimmen, *z.B.*.
```python
logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}")
```
Wenn entweder die Form oder der Name nicht übereinstimmt, haben Sie wahrscheinlich das falsche Kontrollpunktgewicht einer zufällig
Ebene der 🤗 Transformers-Implementierung zugewiesen.
Eine falsche Form ist höchstwahrscheinlich auf eine falsche Einstellung der Konfigurationsparameter in `BrandNewBertConfig()` zurückzuführen, die
nicht genau mit denen übereinstimmen, die für den zu konvertierenden Prüfpunkt verwendet wurden. Es könnte aber auch sein, dass
die PyTorch-Implementierung eines Layers erfordert, dass das Gewicht vorher transponiert wird.
Schließlich sollten Sie auch überprüfen, ob **alle** erforderlichen Gewichte initialisiert sind und alle Checkpoint-Gewichte ausgeben, die
die nicht zur Initialisierung verwendet wurden, um sicherzustellen, dass das Modell korrekt konvertiert wurde. Es ist völlig normal, dass die
Konvertierungsversuche entweder mit einer falschen Shape-Anweisung oder einer falschen Namenszuweisung fehlschlagen. Das liegt höchstwahrscheinlich daran, dass entweder
Sie haben falsche Parameter in `BrandNewBertConfig()` verwendet, haben eine falsche Architektur in der 🤗 Transformers
Implementierung, Sie haben einen Fehler in den `init()` Funktionen einer der Komponenten der 🤗 Transformers
Implementierung oder Sie müssen eine der Kontrollpunktgewichte transponieren.
Dieser Schritt sollte mit dem vorherigen Schritt wiederholt werden, bis alle Gewichte des Kontrollpunkts korrekt in das
Transformers-Modell geladen sind. Nachdem Sie den Prüfpunkt korrekt in die 🤗 Transformers-Implementierung geladen haben, können Sie das Modell
das Modell unter einem Ordner Ihrer Wahl `/path/to/converted/checkpoint/folder` speichern, der dann sowohl ein
Datei `pytorch_model.bin` und eine Datei `config.json` enthalten sollte:
```python
model.save_pretrained("/path/to/converted/checkpoint/folder")
```
**7. Implementieren Sie den Vorwärtspass**
Nachdem es Ihnen gelungen ist, die trainierten Gewichte korrekt in die 🤗 Transformers-Implementierung zu laden, sollten Sie nun dafür sorgen
sicherstellen, dass der Forward Pass korrekt implementiert ist. In [Machen Sie sich mit dem ursprünglichen Repository vertraut](#34-run-a-pretrained-checkpoint-using-the-original-repository) haben Sie bereits ein Skript erstellt, das einen Forward Pass
Durchlauf des Modells unter Verwendung des Original-Repositorys durchführt. Jetzt sollten Sie ein analoges Skript schreiben, das die 🤗 Transformers
Implementierung anstelle der Originalimplementierung verwenden. Es sollte wie folgt aussehen:
```python
model = BrandNewBertModel.from_pretrained("/path/to/converted/checkpoint/folder")
input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]
output = model(input_ids).last_hidden_states
```
Es ist sehr wahrscheinlich, dass die 🤗 Transformers-Implementierung und die ursprüngliche Modell-Implementierung nicht genau die gleiche Ausgabe liefern.
beim ersten Mal nicht die gleiche Ausgabe liefern oder dass der Vorwärtsdurchlauf einen Fehler auslöst. Seien Sie nicht enttäuscht - das ist zu erwarten! Erstens,
sollten Sie sicherstellen, dass der Vorwärtsdurchlauf keine Fehler auslöst. Es passiert oft, dass die falschen Dimensionen verwendet werden
verwendet werden, was zu einem *Dimensionality mismatch* Fehler führt oder dass der falsche Datentyp verwendet wird, *z.B.* `torch.long`
anstelle von `torch.float32`. Zögern Sie nicht, das Hugging Face Team um Hilfe zu bitten, wenn Sie bestimmte Fehler nicht lösen können.
bestimmte Fehler nicht lösen können.
Um sicherzustellen, dass die Implementierung von 🤗 Transformers korrekt funktioniert, müssen Sie sicherstellen, dass die Ausgaben
einer Genauigkeit von `1e-3` entsprechen. Zunächst sollten Sie sicherstellen, dass die Ausgabeformen identisch sind, *d.h.*.
Die Ausgabeform *outputs.shape* sollte für das Skript der 🤗 Transformers-Implementierung und die ursprüngliche
Implementierung ergeben. Als nächstes sollten Sie sicherstellen, dass auch die Ausgabewerte identisch sind. Dies ist einer der schwierigsten
Teile des Hinzufügens eines neuen Modells. Häufige Fehler, warum die Ausgaben nicht identisch sind, sind:
- Einige Ebenen wurden nicht hinzugefügt, *d.h.* eine *Aktivierungsebene* wurde nicht hinzugefügt, oder die Restverbindung wurde vergessen
- Die Worteinbettungsmatrix wurde nicht gebunden
- Es werden die falschen Positionseinbettungen verwendet, da die ursprüngliche Implementierung einen Offset verwendet
- Dropout wird während des Vorwärtsdurchlaufs angewendet. Um dies zu beheben, stellen Sie sicher, dass *model.training auf False* steht und dass keine Dropout
Schicht während des Vorwärtsdurchlaufs fälschlicherweise aktiviert wird, *d.h.* übergeben Sie *self.training* an [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout)
Der beste Weg, das Problem zu beheben, besteht normalerweise darin, sich den Vorwärtsdurchlauf der ursprünglichen Implementierung und die 🤗
Transformers-Implementierung nebeneinander zu sehen und zu prüfen, ob es Unterschiede gibt. Idealerweise sollten Sie die
Zwischenergebnisse beider Implementierungen des Vorwärtsdurchlaufs debuggen/ausdrucken, um die genaue Position im Netzwerk zu finden, an der die 🤗
Transformers-Implementierung eine andere Ausgabe zeigt als die ursprüngliche Implementierung. Stellen Sie zunächst sicher, dass die
hartcodierten `input_ids` in beiden Skripten identisch sind. Überprüfen Sie dann, ob die Ausgaben der ersten Transformation von
der `input_ids` (normalerweise die Worteinbettungen) identisch sind. Und dann arbeiten Sie sich bis zur allerletzten Schicht des
Netzwerks. Irgendwann werden Sie einen Unterschied zwischen den beiden Implementierungen feststellen, der Sie auf den Fehler
in der Implementierung von 🤗 Transformers hinweist. Unserer Erfahrung nach ist ein einfacher und effizienter Weg, viele Druckanweisungen hinzuzufügen
sowohl in der Original-Implementierung als auch in der 🤗 Transformers-Implementierung an den gleichen Stellen im Netzwerk
hinzuzufügen und nacheinander Druckanweisungen zu entfernen, die dieselben Werte für Zwischenpräsentationen anzeigen.
Wenn Sie sicher sind, dass beide Implementierungen die gleiche Ausgabe liefern, überprüfen Sie die Ausgaben mit
`torch.allclose(original_output, output, atol=1e-3)` überprüfen, haben Sie den schwierigsten Teil hinter sich! Herzlichen Glückwunsch - die
Arbeit, die noch zu erledigen ist, sollte ein Kinderspiel sein 😊.
**8. Hinzufügen aller notwendigen Modelltests**
An diesem Punkt haben Sie erfolgreich ein neues Modell hinzugefügt. Es ist jedoch sehr gut möglich, dass das Modell noch nicht
noch nicht vollständig mit dem erforderlichen Design übereinstimmt. Um sicherzustellen, dass die Implementierung vollständig kompatibel mit 🤗 Transformers ist, sollten alle
gemeinsamen Tests bestehen. Der Cookiecutter sollte automatisch eine Testdatei für Ihr Modell hinzugefügt haben, wahrscheinlich unter
demselben `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Führen Sie diese Testdatei aus, um zu überprüfen, ob alle gängigen
Tests bestehen:
```bash
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
Nachdem Sie alle allgemeinen Tests festgelegt haben, müssen Sie nun sicherstellen, dass all die schöne Arbeit, die Sie geleistet haben, gut getestet ist, damit
- a) die Community Ihre Arbeit leicht nachvollziehen kann, indem sie sich spezifische Tests von *brand_new_bert* ansieht
- b) zukünftige Änderungen an Ihrem Modell keine wichtigen Funktionen des Modells zerstören.
Als erstes sollten Sie Integrationstests hinzufügen. Diese Integrationstests tun im Wesentlichen dasselbe wie die Debugging-Skripte
die Sie zuvor zur Implementierung des Modells in 🤗 Transformers verwendet haben. Eine Vorlage für diese Modelltests wurde bereits von dem
Cookiecutter hinzugefügt, die `BrandNewBertModelIntegrationTests` heißt und nur noch von Ihnen ausgefüllt werden muss. Um sicherzustellen, dass diese
Tests erfolgreich sind, führen Sie
```bash
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
Falls Sie Windows verwenden, sollten Sie `RUN_SLOW=1` durch `SET RUN_SLOW=1` ersetzen.
</Tip>
Zweitens sollten alle Funktionen, die speziell für *brand_new_bert* sind, zusätzlich in einem separaten Test getestet werden unter
`BrandNewBertModelTester`/``BrandNewBertModelTest`. Dieser Teil wird oft vergessen, ist aber in zweierlei Hinsicht äußerst nützlich
Weise:
- Er hilft dabei, das Wissen, das Sie während der Modellerweiterung erworben haben, an die Community weiterzugeben, indem er zeigt, wie die
speziellen Funktionen von *brand_new_bert* funktionieren sollten.
- Künftige Mitwirkende können Änderungen am Modell schnell testen, indem sie diese speziellen Tests ausführen.
**9. Implementieren Sie den Tokenizer**
Als nächstes sollten wir den Tokenizer von *brand_new_bert* hinzufügen. Normalerweise ist der Tokenizer äquivalent oder sehr ähnlich zu einem
bereits vorhandenen Tokenizer von 🤗 Transformers.
Es ist sehr wichtig, die ursprüngliche Tokenizer-Datei zu finden/extrahieren und es zu schaffen, diese Datei in die 🤗
Transformers Implementierung des Tokenizers zu laden.
Um sicherzustellen, dass der Tokenizer korrekt funktioniert, empfiehlt es sich, zunächst ein Skript im ursprünglichen Repository zu erstellen
zu erstellen, das eine Zeichenkette eingibt und die `input_ids` zurückgibt. Es könnte etwa so aussehen (in Pseudocode):
```python
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
model = BrandNewBertModel.load_pretrained_checkpoint("/path/to/checkpoint/")
input_ids = model.tokenize(input_str)
```
Möglicherweise müssen Sie noch einmal einen Blick in das ursprüngliche Repository werfen, um die richtige Tokenizer-Funktion zu finden, oder Sie müssen
Sie müssen vielleicht sogar Änderungen an Ihrem Klon des Original-Repositorys vornehmen, um nur die `input_ids` auszugeben. Nach dem Schreiben
ein funktionierendes Tokenisierungsskript geschrieben, das das ursprüngliche Repository verwendet, sollten Sie ein analoges Skript für 🤗 Transformers
erstellt werden. Es sollte ähnlich wie dieses aussehen:
```python
from transformers import BrandNewBertTokenizer
input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words."
tokenizer = BrandNewBertTokenizer.from_pretrained("/path/to/tokenizer/folder/")
input_ids = tokenizer(input_str).input_ids
```
Wenn beide `input_ids` die gleichen Werte ergeben, sollte als letzter Schritt auch eine Tokenizer-Testdatei hinzugefügt werden.
Analog zu den Modellierungstestdateien von *brand_new_bert* sollten auch die Tokenisierungs-Testdateien von *brand_new_bert*
eine Reihe von fest kodierten Integrationstests enthalten.
**10. Führen Sie End-to-End-Integrationstests aus**
Nachdem Sie den Tokenizer hinzugefügt haben, sollten Sie auch ein paar End-to-End-Integrationstests, die sowohl das Modell als auch den
Tokenizer zu `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
Ein solcher Test sollte bei einem aussagekräftigen
Text-zu-Text-Beispiel zeigen, dass die Implementierung von 🤗 Transformers wie erwartet funktioniert. Ein aussagekräftiges Text-zu-Text-Beispiel kann
z.B. *ein Quell-zu-Ziel-Übersetzungspaar, ein Artikel-zu-Zusammenfassung-Paar, ein Frage-zu-Antwort-Paar, usw... Wenn keiner der
der portierten Prüfpunkte in einer nachgelagerten Aufgabe feinabgestimmt wurde, genügt es, sich einfach auf die Modelltests zu verlassen. In einem
letzten Schritt, um sicherzustellen, dass das Modell voll funktionsfähig ist, sollten Sie alle Tests auch auf der GPU durchführen. Es kann
Es kann vorkommen, dass Sie vergessen haben, einige `.to(self.device)` Anweisungen zu internen Tensoren des Modells hinzuzufügen, was in einem solchen
Test zu einem Fehler führen würde. Falls Sie keinen Zugang zu einem Grafikprozessor haben, kann das Hugging Face Team diese Tests für Sie durchführen.
Tests für Sie übernehmen.
**11. Docstring hinzufügen**
Nun sind alle notwendigen Funktionen für *brand_new_bert* hinzugefügt - Sie sind fast fertig! Das Einzige, was Sie noch hinzufügen müssen, ist
ein schöner Docstring und eine Doku-Seite. Der Cookiecutter sollte eine Vorlagendatei namens
`docs/source/model_doc/brand_new_bert.md` hinzugefügt haben, die Sie ausfüllen sollten. Die Benutzer Ihres Modells werden in der Regel zuerst einen Blick auf
diese Seite ansehen, bevor sie Ihr Modell verwenden. Daher muss die Dokumentation verständlich und prägnant sein. Es ist sehr nützlich für
die Gemeinschaft, einige *Tipps* hinzuzufügen, um zu zeigen, wie das Modell verwendet werden sollte. Zögern Sie nicht, das Hugging Face-Team anzupingen
bezüglich der Docstrings.
Stellen Sie als nächstes sicher, dass der zu `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` hinzugefügte docstring
korrekt ist und alle erforderlichen Eingaben und Ausgaben enthält. Wir haben eine ausführliche Anleitung zum Schreiben von Dokumentationen und unserem Docstring-Format [hier](writing-documentation). Es ist immer gut, sich daran zu erinnern, dass die Dokumentation
mindestens so sorgfältig behandelt werden sollte wie der Code in 🤗 Transformers, denn die Dokumentation ist in der Regel der erste Kontaktpunkt der
Berührungspunkt der Community mit dem Modell ist.
**Code refactor**
Großartig, jetzt haben Sie den gesamten erforderlichen Code für *brand_new_bert* hinzugefügt. An diesem Punkt sollten Sie einige mögliche
falschen Codestil korrigieren, indem Sie ausführen:
```bash
make style
```
und überprüfen Sie, ob Ihr Kodierungsstil die Qualitätsprüfung besteht:
```bash
make quality
```
Es gibt noch ein paar andere sehr strenge Designtests in 🤗 Transformers, die möglicherweise noch fehlschlagen, was sich in den
den Tests Ihres Pull Requests. Dies liegt oft an fehlenden Informationen im Docstring oder an einer falschen
Benennung. Das Hugging Face Team wird Ihnen sicherlich helfen, wenn Sie hier nicht weiterkommen.
Und schließlich ist es immer eine gute Idee, den eigenen Code zu refaktorisieren, nachdem man sichergestellt hat, dass er korrekt funktioniert. Wenn alle
Tests bestanden haben, ist es nun an der Zeit, den hinzugefügten Code noch einmal durchzugehen und einige Überarbeitungen vorzunehmen.
Sie haben nun den Codierungsteil abgeschlossen, herzlichen Glückwunsch! 🎉 Sie sind großartig! 😎
**12. Laden Sie die Modelle in den Model Hub hoch**
In diesem letzten Teil sollten Sie alle Checkpoints konvertieren und in den Modell-Hub hochladen und eine Modellkarte für jeden
hochgeladenen Modell-Kontrollpunkt. Sie können sich mit den Hub-Funktionen vertraut machen, indem Sie unsere [Model sharing and uploading Page](model_sharing) lesen. Hier sollten Sie mit dem Hugging Face-Team zusammenarbeiten, um einen passenden Namen für jeden
Checkpoint festzulegen und die erforderlichen Zugriffsrechte zu erhalten, um das Modell unter der Organisation des Autors *brand_new_bert* hochladen zu können.
*brand_new_bert*. Die Methode `push_to_hub`, die in allen Modellen in `transformers` vorhanden ist, ist ein schneller und effizienter Weg, Ihren Checkpoint in den Hub zu pushen. Ein kleines Snippet ist unten eingefügt:
```python
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
Es lohnt sich, etwas Zeit darauf zu verwenden, für jeden Kontrollpunkt passende Musterkarten zu erstellen. Die Modellkarten sollten die
spezifischen Merkmale dieses bestimmten Prüfpunkts hervorheben, * z.B.* auf welchem Datensatz wurde der Prüfpunkt
vortrainiert/abgestimmt? Für welche nachgelagerte Aufgabe sollte das Modell verwendet werden? Und fügen Sie auch etwas Code bei, wie Sie
wie das Modell korrekt verwendet wird.
**13. (Optional) Notizbuch hinzufügen**
Es ist sehr hilfreich, ein Notizbuch hinzuzufügen, in dem im Detail gezeigt wird, wie *brand_new_bert* für Schlussfolgerungen verwendet werden kann und/oder
bei einer nachgelagerten Aufgabe feinabgestimmt wird. Dies ist nicht zwingend erforderlich, um Ihren PR zusammenzuführen, aber sehr nützlich für die Gemeinschaft.
**14. Reichen Sie Ihren fertigen PR ein**
Sie sind jetzt mit der Programmierung fertig und können zum letzten Schritt übergehen, nämlich der Zusammenführung Ihres PR mit main. Normalerweise hat das
Hugging Face Team Ihnen an diesem Punkt bereits geholfen haben, aber es lohnt sich, sich etwas Zeit zu nehmen, um Ihrem fertigen
PR eine schöne Beschreibung zu geben und eventuell Kommentare zu Ihrem Code hinzuzufügen, wenn Sie Ihren Gutachter auf bestimmte Designentscheidungen hinweisen wollen.
Gutachter hinweisen wollen.
### Teilen Sie Ihre Arbeit!!
Jetzt ist es an der Zeit, von der Community Anerkennung für Ihre Arbeit zu bekommen! Die Fertigstellung einer Modellergänzung ist ein wichtiger
Beitrag zu Transformers und der gesamten NLP-Gemeinschaft. Ihr Code und die portierten vortrainierten Modelle werden sicherlich
von Hunderten und vielleicht sogar Tausenden von Entwicklern und Forschern genutzt werden. Sie sollten stolz auf Ihre Arbeit sein und Ihre
Ihre Leistung mit der Gemeinschaft teilen.
**Sie haben ein weiteres Modell erstellt, das für jeden in der Community super einfach zugänglich ist! 🤯**
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie erstellt man eine benutzerdefinierte Pipeline?
In dieser Anleitung sehen wir uns an, wie Sie eine benutzerdefinierte Pipeline erstellen und sie auf dem [Hub](hf.co/models) freigeben oder sie der
🤗 Transformers-Bibliothek hinzufügen.
Zuallererst müssen Sie entscheiden, welche Roheingaben die Pipeline verarbeiten kann. Es kann sich um Strings, rohe Bytes,
Dictionaries oder was auch immer die wahrscheinlichste gewünschte Eingabe ist. Versuchen Sie, diese Eingaben so rein wie möglich in Python zu halten
denn das macht die Kompatibilität einfacher (auch mit anderen Sprachen über JSON). Dies werden die Eingaben der
Pipeline (`Vorverarbeitung`).
Definieren Sie dann die `Outputs`. Dieselbe Richtlinie wie für die Eingänge. Je einfacher, desto besser. Dies werden die Ausgaben der
Methode `Postprocess`.
Beginnen Sie damit, die Basisklasse `Pipeline` mit den 4 Methoden zu erben, die für die Implementierung von `preprocess` benötigt werden,
Weiterleiten", "Nachbearbeitung" und "Parameter säubern".
```python
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(inputs["input_ids"])
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
Die Struktur dieser Aufteilung soll eine relativ nahtlose Unterstützung für CPU/GPU ermöglichen und gleichzeitig die Durchführung von
Vor-/Nachbearbeitung auf der CPU in verschiedenen Threads
Preprocess" nimmt die ursprünglich definierten Eingaben und wandelt sie in etwas um, das in das Modell eingespeist werden kann. Es kann
mehr Informationen enthalten und ist normalerweise ein `Dict`.
`_forward` ist das Implementierungsdetail und ist nicht dafür gedacht, direkt aufgerufen zu werden. Weiterleiten" ist die bevorzugte
aufgerufene Methode, da sie Sicherheitsvorkehrungen enthält, die sicherstellen, dass alles auf dem erwarteten Gerät funktioniert. Wenn etwas
mit einem realen Modell verknüpft ist, gehört es in die Methode `_forward`, alles andere gehört in die Methoden preprocess/postprocess.
Die Methode `Postprocess` nimmt die Ausgabe von `_forward` und verwandelt sie in die endgültige Ausgabe, die zuvor festgelegt wurde.
zuvor entschieden wurde.
Die Methode `_sanitize_parameters` ermöglicht es dem Benutzer, beliebige Parameter zu übergeben, wann immer er möchte, sei es bei der Initialisierung
Zeit `pipeline(...., maybe_arg=4)` oder zur Aufrufzeit `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
Die Rückgabe von `_sanitize_parameters` sind die 3 Dicts von kwargs, die direkt an `preprocess` übergeben werden,
`_forward` und `postprocess` übergeben werden. Füllen Sie nichts aus, wenn der Aufrufer keinen zusätzlichen Parameter angegeben hat. Das
erlaubt es, die Standardargumente in der Funktionsdefinition beizubehalten, was immer "natürlicher" ist.
Ein klassisches Beispiel wäre das Argument `top_k` in der Nachbearbeitung bei Klassifizierungsaufgaben.
```python
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
```
In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit
`_sanitize_parameters` to allow this new parameter.
```python
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Versuchen Sie, die Eingaben/Ausgaben sehr einfach und idealerweise JSON-serialisierbar zu halten, da dies die Verwendung der Pipeline sehr einfach macht
ohne dass die Benutzer neue Arten von Objekten verstehen müssen. Es ist auch relativ üblich, viele verschiedene Arten von Argumenten zu unterstützen
von Argumenten zu unterstützen (Audiodateien, die Dateinamen, URLs oder reine Bytes sein können).
## Hinzufügen zur Liste der unterstützten Aufgaben
Um Ihre `neue Aufgabe` in die Liste der unterstützten Aufgaben aufzunehmen, müssen Sie sie zur `PIPELINE_REGISTRY` hinzufügen:
```python
from transformers.pipelines import PIPELINE_REGISTRY
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
Wenn Sie möchten, können Sie ein Standardmodell angeben. In diesem Fall sollte es mit einer bestimmten Revision (die der Name einer Verzweigung oder ein Commit-Hash sein kann, hier haben wir `"abcdef"` genommen) sowie mit dem Typ versehen sein:
```python
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome_model", "abcdef")},
type="text", # current support type: text, audio, image, multimodal
)
```
## Teilen Sie Ihre Pipeline auf dem Hub
Um Ihre benutzerdefinierte Pipeline auf dem Hub freizugeben, müssen Sie lediglich den benutzerdefinierten Code Ihrer `Pipeline`-Unterklasse in einer
Python-Datei speichern. Nehmen wir zum Beispiel an, Sie möchten eine benutzerdefinierte Pipeline für die Klassifizierung von Satzpaaren wie folgt verwenden:
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
Die Implementierung ist Framework-unabhängig und funktioniert für PyTorch- und TensorFlow-Modelle. Wenn wir dies in einer Datei
einer Datei namens `pair_classification.py` gespeichert haben, können wir sie importieren und wie folgt registrieren:
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
tf_model=TFAutoModelForSequenceClassification,
)
```
Sobald dies geschehen ist, können wir es mit einem vortrainierten Modell verwenden. Zum Beispiel wurde `sgugger/finetuned-bert-mrpc` auf den
auf den MRPC-Datensatz abgestimmt, der Satzpaare als Paraphrasen oder nicht klassifiziert.
```py
from transformers import pipeline
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
```
Dann können wir sie auf dem Hub mit der Methode `save_pretrained` in einem `Repository` freigeben:
```py
from huggingface_hub import Repository
repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline")
classifier.save_pretrained("test-dynamic-pipeline")
repo.push_to_hub()
```
Dadurch wird die Datei, in der Sie `PairClassificationPipeline` definiert haben, in den Ordner `"test-dynamic-pipeline"` kopiert,
und speichert das Modell und den Tokenizer der Pipeline, bevor Sie alles in das Repository verschieben
`{Ihr_Benutzername}/test-dynamic-pipeline`. Danach kann jeder die Pipeline verwenden, solange er die Option
`trust_remote_code=True` angeben:
```py
from transformers import pipeline
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
```
## Hinzufügen der Pipeline zu 🤗 Transformers
Wenn Sie Ihre Pipeline zu 🤗 Transformers beitragen möchten, müssen Sie ein neues Modul im Untermodul `pipelines` hinzufügen
mit dem Code Ihrer Pipeline hinzufügen. Fügen Sie es dann der Liste der in `pipelines/__init__.py` definierten Aufgaben hinzu.
Dann müssen Sie noch Tests hinzufügen. Erstellen Sie eine neue Datei `tests/test_pipelines_MY_PIPELINE.py` mit Beispielen für die anderen Tests.
Die Funktion `run_pipeline_test` ist sehr allgemein gehalten und läuft auf kleinen Zufallsmodellen auf jeder möglichen
Architektur, wie durch `model_mapping` und `tf_model_mapping` definiert.
Dies ist sehr wichtig, um die zukünftige Kompatibilität zu testen, d.h. wenn jemand ein neues Modell für
`XXXForQuestionAnswering` hinzufügt, wird der Pipeline-Test versuchen, mit diesem Modell zu arbeiten. Da die Modelle zufällig sind, ist es
ist es unmöglich, die tatsächlichen Werte zu überprüfen. Deshalb gibt es eine Hilfsfunktion `ANY`, die einfach versucht, die
Ausgabe der Pipeline TYPE.
Außerdem *müssen* Sie 2 (idealerweise 4) Tests implementieren.
- test_small_model_pt` : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_tf`.
- test_small_model_tf : Definieren Sie 1 kleines Modell für diese Pipeline (es spielt keine Rolle, ob die Ergebnisse keinen Sinn ergeben)
und testen Sie die Ausgaben der Pipeline. Die Ergebnisse sollten die gleichen sein wie bei `test_small_model_pt`.
- test_large_model_pt` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.
- test_large_model_tf` (`optional`): Testet die Pipeline an einer echten Pipeline, bei der die Ergebnisse
Sinn machen. Diese Tests sind langsam und sollten als solche gekennzeichnet werden. Hier geht es darum, die Pipeline zu präsentieren und sicherzustellen
sicherzustellen, dass es in zukünftigen Versionen keine Abweichungen gibt.
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wie konvertiert man ein 🤗 Transformers-Modell in TensorFlow?
Die Tatsache, dass mehrere Frameworks für die Verwendung mit 🤗 Transformers zur Verfügung stehen, gibt Ihnen die Flexibilität, deren Stärken beim Entwurf Ihrer Anwendung auszuspielen.
Ihre Anwendung zu entwerfen, aber das bedeutet auch, dass die Kompatibilität für jedes Modell einzeln hinzugefügt werden muss. Die gute Nachricht ist, dass
das Hinzufügen von TensorFlow-Kompatibilität zu einem bestehenden Modell einfacher ist als [das Hinzufügen eines neuen Modells von Grund auf](add_new_model)!
Ob Sie ein tieferes Verständnis für große TensorFlow-Modelle haben möchten, einen wichtigen Open-Source-Beitrag leisten oder
TensorFlow für das Modell Ihrer Wahl aktivieren wollen, dieser Leitfaden ist für Sie.
Dieser Leitfaden befähigt Sie, ein Mitglied unserer Gemeinschaft, TensorFlow-Modellgewichte und/oder
Architekturen beizusteuern, die in 🤗 Transformers verwendet werden sollen, und zwar mit minimaler Betreuung durch das Hugging Face Team. Das Schreiben eines neuen Modells
ist keine Kleinigkeit, aber ich hoffe, dass dieser Leitfaden dazu beiträgt, dass es weniger eine Achterbahnfahrt 🎢 und mehr ein Spaziergang im Park 🚶 ist.
Die Nutzung unserer kollektiven Erfahrungen ist absolut entscheidend, um diesen Prozess immer einfacher zu machen, und deshalb möchten wir
ermutigen Sie daher, Verbesserungsvorschläge für diesen Leitfaden zu machen!
Bevor Sie tiefer eintauchen, empfehlen wir Ihnen, die folgenden Ressourcen zu lesen, wenn Sie neu in 🤗 Transformers sind:
- [Allgemeiner Überblick über 🤗 Transformers](add_new_model#general-overview-of-transformers)
- [Die TensorFlow-Philosophie von Hugging Face](https://huggingface.co/blog/tensorflow-philosophy)
Im Rest dieses Leitfadens werden Sie lernen, was nötig ist, um eine neue TensorFlow Modellarchitektur hinzuzufügen, die
Verfahren zur Konvertierung von PyTorch in TensorFlow-Modellgewichte und wie Sie Unstimmigkeiten zwischen ML
Frameworks. Legen Sie los!
<Tip>
Sind Sie unsicher, ob das Modell, das Sie verwenden möchten, bereits eine entsprechende TensorFlow-Architektur hat?
&nbsp;
Überprüfen Sie das Feld `model_type` in der `config.json` des Modells Ihrer Wahl
([Beispiel](https://huggingface.co/bert-base-uncased/blob/main/config.json#L14)). Wenn der entsprechende Modellordner in
🤗 Transformers eine Datei hat, deren Name mit "modeling_tf" beginnt, bedeutet dies, dass es eine entsprechende TensorFlow
Architektur hat ([Beispiel](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert)).
</Tip>
## Schritt-für-Schritt-Anleitung zum Hinzufügen von TensorFlow-Modellarchitektur-Code
Es gibt viele Möglichkeiten, eine große Modellarchitektur zu entwerfen, und viele Möglichkeiten, diesen Entwurf zu implementieren. Wie auch immer,
Sie erinnern sich vielleicht an unseren [allgemeinen Überblick über 🤗 Transformers](add_new_model#general-overview-of-transformers)
wissen, dass wir ein meinungsfreudiger Haufen sind - die Benutzerfreundlichkeit von 🤗 Transformers hängt von konsistenten Designentscheidungen ab. Aus
Erfahrung können wir Ihnen ein paar wichtige Dinge über das Hinzufügen von TensorFlow-Modellen sagen:
- Erfinden Sie das Rad nicht neu! In den meisten Fällen gibt es mindestens zwei Referenzimplementierungen, die Sie überprüfen sollten: das
PyTorch-Äquivalent des Modells, das Sie implementieren, und andere TensorFlow-Modelle für dieselbe Klasse von Problemen.
- Gute Modellimplementierungen überleben den Test der Zeit. Dies geschieht nicht, weil der Code hübsch ist, sondern eher
sondern weil der Code klar, einfach zu debuggen und darauf aufzubauen ist. Wenn Sie den Maintainern das Leben mit Ihrer
TensorFlow-Implementierung leicht machen, indem Sie die gleichen Muster wie in anderen TensorFlow-Modellen nachbilden und die Abweichung
zur PyTorch-Implementierung minimieren, stellen Sie sicher, dass Ihr Beitrag lange Bestand haben wird.
- Bitten Sie um Hilfe, wenn Sie nicht weiterkommen! Das 🤗 Transformers-Team ist da, um zu helfen, und wir haben wahrscheinlich Lösungen für die gleichen
Probleme gefunden, vor denen Sie stehen.
Hier finden Sie einen Überblick über die Schritte, die zum Hinzufügen einer TensorFlow-Modellarchitektur erforderlich sind:
1. Wählen Sie das Modell, das Sie konvertieren möchten
2. Bereiten Sie die Transformers-Entwicklungsumgebung vor.
3. (Optional) Verstehen Sie die theoretischen Aspekte und die bestehende Implementierung
4. Implementieren Sie die Modellarchitektur
5. Implementieren Sie Modelltests
6. Reichen Sie den Pull-Antrag ein
7. (Optional) Erstellen Sie Demos und teilen Sie diese mit der Welt
### 1.-3. Bereiten Sie Ihren Modellbeitrag vor
**1. Wählen Sie das Modell, das Sie konvertieren möchten**
Beginnen wir mit den Grundlagen: Als erstes müssen Sie die Architektur kennen, die Sie konvertieren möchten. Wenn Sie
Sie sich nicht auf eine bestimmte Architektur festgelegt haben, ist es eine gute Möglichkeit, das 🤗 Transformers-Team um Vorschläge zu bitten.
Wir werden Sie zu den wichtigsten Architekturen führen, die auf der TensorFlow-Seite noch fehlen.
Seite fehlen. Wenn das spezifische Modell, das Sie mit TensorFlow verwenden möchten, bereits eine Implementierung der TensorFlow-Architektur in
🤗 Transformers, aber es fehlen Gewichte, können Sie direkt in den
Abschnitt [Gewichtskonvertierung](#adding-tensorflow-weights-to-hub)
auf dieser Seite.
Der Einfachheit halber wird im Rest dieser Anleitung davon ausgegangen, dass Sie sich entschieden haben, mit der TensorFlow-Version von
*BrandNewBert* (dasselbe Beispiel wie in der [Anleitung](add_new_model), um ein neues Modell von Grund auf hinzuzufügen).
<Tip>
Bevor Sie mit der Arbeit an einer TensorFlow-Modellarchitektur beginnen, sollten Sie sich vergewissern, dass es keine laufenden Bemühungen in dieser Richtung gibt.
Sie können nach `BrandNewBert` auf der
[pull request GitHub page](https://github.com/huggingface/transformers/pulls?q=is%3Apr), um zu bestätigen, dass es keine
TensorFlow-bezogene Pull-Anfrage gibt.
</Tip>
**2. Transformers-Entwicklungsumgebung vorbereiten**
Nachdem Sie die Modellarchitektur ausgewählt haben, öffnen Sie einen PR-Entwurf, um Ihre Absicht zu signalisieren, daran zu arbeiten. Folgen Sie den
Anweisungen, um Ihre Umgebung einzurichten und einen PR-Entwurf zu öffnen.
1. Forken Sie das [repository](https://github.com/huggingface/transformers), indem Sie auf der Seite des Repositorys auf die Schaltfläche 'Fork' klicken.
Seite des Repositorys klicken. Dadurch wird eine Kopie des Codes unter Ihrem GitHub-Benutzerkonto erstellt.
2. Klonen Sie Ihren `transformers` Fork auf Ihre lokale Festplatte und fügen Sie das Basis-Repository als Remote hinzu:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Richten Sie eine Entwicklungsumgebung ein, indem Sie z.B. den folgenden Befehl ausführen:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
Abhängig von Ihrem Betriebssystem und da die Anzahl der optionalen Abhängigkeiten von Transformers wächst, kann es sein, dass Sie bei diesem Befehl einen
Fehler mit diesem Befehl erhalten. Wenn das der Fall ist, stellen Sie sicher, dass Sie TensorFlow installieren und dann ausführen:
```bash
pip install -e ".[quality]"
```
**Hinweis:** Sie müssen CUDA nicht installiert haben. Es reicht aus, das neue Modell auf der CPU laufen zu lassen.
4. Erstellen Sie eine Verzweigung mit einem beschreibenden Namen von Ihrer Hauptverzweigung
```bash
git checkout -b add_tf_brand_new_bert
```
5. Abrufen und zurücksetzen auf die aktuelle Hauptversion
```bash
git fetch upstream
git rebase upstream/main
```
6. Fügen Sie eine leere `.py` Datei in `transformers/src/models/brandnewbert/` mit dem Namen `modeling_tf_brandnewbert.py` hinzu. Dies wird
Ihre TensorFlow-Modelldatei sein.
7. Übertragen Sie die Änderungen auf Ihr Konto mit:
```bash
git add .
git commit -m "initial commit"
git push -u origin add_tf_brand_new_bert
```
8. Wenn Sie zufrieden sind, gehen Sie auf die Webseite Ihrer Abspaltung auf GitHub. Klicken Sie auf "Pull request". Stellen Sie sicher, dass Sie das
GitHub-Handle einiger Mitglieder des Hugging Face-Teams als Reviewer hinzuzufügen, damit das Hugging Face-Team über zukünftige Änderungen informiert wird.
zukünftige Änderungen benachrichtigt wird.
9. Ändern Sie den PR in einen Entwurf, indem Sie auf der rechten Seite der GitHub-Pull-Request-Webseite auf "In Entwurf umwandeln" klicken.
Jetzt haben Sie eine Entwicklungsumgebung eingerichtet, um *BrandNewBert* nach TensorFlow in 🤗 Transformers zu portieren.
**3. (Optional) Verstehen Sie die theoretischen Aspekte und die bestehende Implementierung**
Sie sollten sich etwas Zeit nehmen, um die Arbeit von *BrandNewBert* zu lesen, falls eine solche Beschreibung existiert. Möglicherweise gibt es große
Abschnitte des Papiers, die schwer zu verstehen sind. Wenn das der Fall ist, ist das in Ordnung - machen Sie sich keine Sorgen! Das Ziel ist
ist es nicht, ein tiefes theoretisches Verständnis des Papiers zu erlangen, sondern die notwendigen Informationen zu extrahieren, um
das Modell mit Hilfe von TensorFlow effektiv in 🤗 Transformers neu zu implementieren. Das heißt, Sie müssen nicht zu viel Zeit auf die
viel Zeit auf die theoretischen Aspekte verwenden, sondern sich lieber auf die praktischen Aspekte konzentrieren, nämlich auf die bestehende Modelldokumentation
Seite (z.B. [model docs for BERT](model_doc/bert)).
Nachdem Sie die Grundlagen der Modelle, die Sie implementieren wollen, verstanden haben, ist es wichtig, die bestehende
Implementierung zu verstehen. Dies ist eine gute Gelegenheit, sich zu vergewissern, dass eine funktionierende Implementierung mit Ihren Erwartungen an das
Modell entspricht, und um technische Herausforderungen auf der TensorFlow-Seite vorauszusehen.
Es ist ganz natürlich, dass Sie sich von der Menge an Informationen, die Sie gerade aufgesogen haben, überwältigt fühlen. Es ist
Es ist definitiv nicht erforderlich, dass Sie in dieser Phase alle Facetten des Modells verstehen. Dennoch empfehlen wir Ihnen dringend
ermutigen wir Sie, alle dringenden Fragen in unserem [Forum](https://discuss.huggingface.co/) zu klären.
### 4. Implementierung des Modells
Jetzt ist es an der Zeit, endlich mit dem Programmieren zu beginnen. Als Ausgangspunkt empfehlen wir die PyTorch-Datei selbst: Kopieren Sie den Inhalt von
modeling_brand_new_bert.py` in `src/transformers/models/brand_new_bert/` nach
modeling_tf_brand_new_bert.py`. Das Ziel dieses Abschnitts ist es, die Datei zu ändern und die Importstruktur von
🤗 Transformers zu aktualisieren, so dass Sie `TFBrandNewBert` und
`TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` erfolgreich ein funktionierendes TensorFlow *BrandNewBert* Modell lädt.
Leider gibt es kein Rezept, um ein PyTorch-Modell in TensorFlow zu konvertieren. Sie können jedoch unsere Auswahl an
Tipps befolgen, um den Prozess so reibungslos wie möglich zu gestalten:
- Stellen Sie `TF` dem Namen aller Klassen voran (z.B. wird `BrandNewBert` zu `TFBrandNewBert`).
- Die meisten PyTorch-Operationen haben einen direkten TensorFlow-Ersatz. Zum Beispiel entspricht `torch.nn.Linear` der Klasse
`tf.keras.layers.Dense`, `torch.nn.Dropout` entspricht `tf.keras.layers.Dropout`, usw. Wenn Sie sich nicht sicher sind
über eine bestimmte Operation nicht sicher sind, können Sie die [TensorFlow-Dokumentation](https://www.tensorflow.org/api_docs/python/tf)
oder die [PyTorch-Dokumentation](https://pytorch.org/docs/stable/).
- Suchen Sie nach Mustern in der Codebasis von 🤗 Transformers. Wenn Sie auf eine bestimmte Operation stoßen, für die es keinen direkten Ersatz gibt
Ersatz hat, stehen die Chancen gut, dass jemand anderes bereits das gleiche Problem hatte.
- Behalten Sie standardmäßig die gleichen Variablennamen und die gleiche Struktur wie in PyTorch bei. Dies erleichtert die Fehlersuche, die Verfolgung von
Probleme zu verfolgen und spätere Korrekturen vorzunehmen.
- Einige Ebenen haben in jedem Framework unterschiedliche Standardwerte. Ein bemerkenswertes Beispiel ist die Schicht für die Batch-Normalisierung
epsilon (`1e-5` in [PyTorch](https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d)
und `1e-3` in [TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)).
Prüfen Sie die Dokumentation genau!
- Die Variablen `nn.Parameter` von PyTorch müssen in der Regel innerhalb von TF Layer's `build()` initialisiert werden. Siehe das folgende
Beispiel: [PyTorch](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_vit_mae.py#L212) /
[TensorFlow](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_tf_vit_mae.py#L220)
- Wenn das PyTorch-Modell ein `#copied from ...` am Anfang einer Funktion hat, stehen die Chancen gut, dass Ihr TensorFlow-Modell diese Funktion auch
diese Funktion von der Architektur ausleihen kann, von der sie kopiert wurde, vorausgesetzt, es hat eine TensorFlow-Architektur.
- Die korrekte Zuweisung des Attributs `name` in TensorFlow-Funktionen ist entscheidend, um das `from_pt=True` Gewicht zu erreichen
Cross-Loading. Name" ist fast immer der Name der entsprechenden Variablen im PyTorch-Code. Wenn `name` nicht
nicht richtig gesetzt ist, sehen Sie dies in der Fehlermeldung beim Laden der Modellgewichte.
- Die Logik der Basismodellklasse, `BrandNewBertModel`, befindet sich in `TFBrandNewBertMainLayer`, einer Keras
Schicht-Unterklasse ([Beispiel](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L719)).
TFBrandNewBertModel" ist lediglich ein Wrapper für diese Schicht.
- Keras-Modelle müssen erstellt werden, um die vorher trainierten Gewichte zu laden. Aus diesem Grund muss `TFBrandNewBertPreTrainedModel`
ein Beispiel für die Eingaben in das Modell enthalten, die `dummy_inputs`
([Beispiel](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L916)).
- Wenn Sie nicht weiterkommen, fragen Sie nach Hilfe - wir sind für Sie da! 🤗
Neben der Modelldatei selbst müssen Sie auch die Verweise auf die Modellklassen und die zugehörigen
Dokumentationsseiten hinzufügen. Sie können diesen Teil ganz nach den Mustern in anderen PRs erledigen
([Beispiel](https://github.com/huggingface/transformers/pull/18020/files)). Hier ist eine Liste der erforderlichen manuellen
Änderungen:
- Fügen Sie alle öffentlichen Klassen von *BrandNewBert* in `src/transformers/__init__.py` ein.
- Fügen Sie *BrandNewBert* Klassen zu den entsprechenden Auto Klassen in `src/transformers/models/auto/modeling_tf_auto.py` hinzu.
- Fügen Sie die *BrandNewBert* zugehörigen Klassen für träges Laden in `src/transformers/utils/dummy_tf_objects.py` hinzu.
- Aktualisieren Sie die Importstrukturen für die öffentlichen Klassen in `src/transformers/models/brand_new_bert/__init__.py`.
- Fügen Sie die Dokumentationszeiger auf die öffentlichen Methoden von *BrandNewBert* in `docs/source/de/model_doc/brand_new_bert.md` hinzu.
- Fügen Sie sich selbst zur Liste der Mitwirkenden an *BrandNewBert* in `docs/source/de/model_doc/brand_new_bert.md` hinzu.
- Fügen Sie schließlich ein grünes Häkchen ✅ in der TensorFlow-Spalte von *BrandNewBert* in `docs/source/de/index.md` hinzu.
Wenn Sie mit Ihrer Implementierung zufrieden sind, führen Sie die folgende Checkliste aus, um zu bestätigen, dass Ihre Modellarchitektur
fertig ist:
1. Alle Schichten, die sich zur Trainingszeit anders verhalten (z.B. Dropout), werden mit einem `Training` Argument aufgerufen, das
von den Top-Level-Klassen weitergegeben wird
2. Sie haben `#copied from ...` verwendet, wann immer es möglich war.
3. Die Funktion `TFBrandNewBertMainLayer` und alle Klassen, die sie verwenden, haben ihre Funktion `call` mit `@unpack_inputs` dekoriert
4. TFBrandNewBertMainLayer` ist mit `@keras_serializable` dekoriert
5. Ein TensorFlow-Modell kann aus PyTorch-Gewichten mit `TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` geladen werden.
6. Sie können das TensorFlow Modell mit dem erwarteten Eingabeformat aufrufen
### 5. Modell-Tests hinzufügen
Hurra, Sie haben ein TensorFlow-Modell implementiert! Jetzt ist es an der Zeit, Tests hinzuzufügen, um sicherzustellen, dass sich Ihr Modell wie erwartet verhält.
erwartet. Wie im vorigen Abschnitt schlagen wir vor, dass Sie zunächst die Datei `test_modeling_brand_new_bert.py` in
`tests/models/brand_new_bert/` in die Datei `test_modeling_tf_brand_new_bert.py` zu kopieren und dann die notwendigen
TensorFlow-Ersetzungen vornehmen. Für den Moment sollten Sie in allen Aufrufen von `.from_pretrained()` das Flag `from_pt=True` verwenden, um die
die vorhandenen PyTorch-Gewichte zu laden.
Wenn Sie damit fertig sind, kommt der Moment der Wahrheit: Führen Sie die Tests durch! 😬
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
Das wahrscheinlichste Ergebnis ist, dass Sie eine Reihe von Fehlern sehen werden. Machen Sie sich keine Sorgen, das ist zu erwarten! Das Debuggen von ML-Modellen ist
notorisch schwierig, und der Schlüssel zum Erfolg ist Geduld (und `breakpoint()`). Nach unserer Erfahrung sind die schwierigsten
Probleme aus subtilen Unstimmigkeiten zwischen ML-Frameworks, zu denen wir am Ende dieses Leitfadens ein paar Hinweise geben.
In anderen Fällen kann es sein, dass ein allgemeiner Test nicht direkt auf Ihr Modell anwendbar ist; in diesem Fall empfehlen wir eine Überschreibung
auf der Ebene der Modelltestklasse. Zögern Sie nicht, in Ihrem Entwurf einer Pull-Anfrage um Hilfe zu bitten, wenn
Sie nicht weiterkommen.
Wenn alle Tests erfolgreich waren, können Sie Ihr Modell in die 🤗 Transformers-Bibliothek aufnehmen! 🎉
### 6.-7. Stellen Sie sicher, dass jeder Ihr Modell verwenden kann
**6. Reichen Sie den Pull Request ein**
Sobald Sie mit der Implementierung und den Tests fertig sind, ist es an der Zeit, eine Pull-Anfrage einzureichen. Bevor Sie Ihren Code einreichen,
führen Sie unser Dienstprogramm zur Codeformatierung, `make fixup` 🪄, aus. Damit werden automatisch alle Formatierungsfehler behoben, die dazu führen würden, dass
unsere automatischen Prüfungen fehlschlagen würden.
Nun ist es an der Zeit, Ihren Entwurf einer Pull-Anfrage in eine echte Pull-Anfrage umzuwandeln. Klicken Sie dazu auf die Schaltfläche "Bereit für
Review" und fügen Sie Joao (`@gante`) und Matt (`@Rocketknight1`) als Reviewer hinzu. Eine Modell-Pull-Anfrage benötigt
mindestens 3 Reviewer, aber sie werden sich darum kümmern, geeignete zusätzliche Reviewer für Ihr Modell zu finden.
Nachdem alle Gutachter mit dem Stand Ihres PR zufrieden sind, entfernen Sie als letzten Aktionspunkt das Flag `from_pt=True` in
.from_pretrained()-Aufrufen zu entfernen. Da es keine TensorFlow-Gewichte gibt, müssen Sie sie hinzufügen! Lesen Sie den Abschnitt
unten, um zu erfahren, wie Sie dies tun können.
Wenn schließlich die TensorFlow-Gewichte zusammengeführt werden, Sie mindestens 3 Genehmigungen von Prüfern haben und alle CI-Checks grün sind
grün sind, überprüfen Sie die Tests ein letztes Mal lokal
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
und wir werden Ihren PR zusammenführen! Herzlichen Glückwunsch zu dem Meilenstein 🎉.
**7. (Optional) Erstellen Sie Demos und teilen Sie sie mit der Welt**
Eine der schwierigsten Aufgaben bei Open-Source ist die Entdeckung. Wie können die anderen Benutzer von der Existenz Ihres
fabelhaften TensorFlow-Beitrags erfahren? Mit der richtigen Kommunikation, natürlich! 📣
Es gibt vor allem zwei Möglichkeiten, Ihr Modell mit der Community zu teilen:
- Erstellen Sie Demos. Dazu gehören Gradio-Demos, Notebooks und andere unterhaltsame Möglichkeiten, Ihr Modell vorzuführen. Wir raten Ihnen
ermutigen Sie, ein Notizbuch zu unseren [community-driven demos](https://huggingface.co/docs/transformers/community) hinzuzufügen.
- Teilen Sie Geschichten in sozialen Medien wie Twitter und LinkedIn. Sie sollten stolz auf Ihre Arbeit sein und sie mit der
Ihre Leistung mit der Community teilen - Ihr Modell kann nun von Tausenden von Ingenieuren und Forschern auf der ganzen Welt genutzt werden
der Welt genutzt werden 🌍! Wir werden Ihre Beiträge gerne retweeten und Ihnen helfen, Ihre Arbeit mit der Community zu teilen.
## Hinzufügen von TensorFlow-Gewichten zum 🤗 Hub
Unter der Annahme, dass die TensorFlow-Modellarchitektur in 🤗 Transformers verfügbar ist, ist die Umwandlung von PyTorch-Gewichten in
TensorFlow-Gewichte ist ein Kinderspiel!
Hier sehen Sie, wie es geht:
1. Stellen Sie sicher, dass Sie in Ihrem Terminal bei Ihrem Hugging Face Konto angemeldet sind. Sie können sich mit dem folgenden Befehl anmelden
`huggingface-cli login` (Ihre Zugangstoken finden Sie [hier](https://huggingface.co/settings/tokens))
2. Führen Sie `transformers-cli pt-to-tf --model-name foo/bar` aus, wobei `foo/bar` der Name des Modell-Repositorys ist
ist, das die PyTorch-Gewichte enthält, die Sie konvertieren möchten.
3. Markieren Sie `@joaogante` und `@Rocketknight1` in dem 🤗 Hub PR, den der obige Befehl gerade erstellt hat
Das war's! 🎉
## Fehlersuche in verschiedenen ML-Frameworks 🐛
Irgendwann, wenn Sie eine neue Architektur hinzufügen oder TensorFlow-Gewichte für eine bestehende Architektur erstellen, werden Sie
stoßen Sie vielleicht auf Fehler, die sich über Unstimmigkeiten zwischen PyTorch und TensorFlow beschweren. Sie könnten sich sogar dazu entschließen, den
Modellarchitektur-Code für die beiden Frameworks zu öffnen, und stellen fest, dass sie identisch aussehen. Was ist denn da los? 🤔
Lassen Sie uns zunächst darüber sprechen, warum es wichtig ist, diese Diskrepanzen zu verstehen. Viele Community-Mitglieder werden 🤗
Transformers-Modelle und vertrauen darauf, dass sich unsere Modelle wie erwartet verhalten. Wenn es eine große Diskrepanz gibt
zwischen den beiden Frameworks auftritt, bedeutet dies, dass das Modell nicht der Referenzimplementierung für mindestens eines der Frameworks folgt.
der Frameworks folgt. Dies kann zu stillen Fehlern führen, bei denen das Modell zwar läuft, aber eine schlechte Leistung aufweist. Dies ist
wohl schlimmer als ein Modell, das überhaupt nicht läuft! Aus diesem Grund streben wir an, dass die Abweichung zwischen den Frameworks kleiner als
1e-5" in allen Phasen des Modells.
Wie bei anderen numerischen Problemen auch, steckt der Teufel im Detail. Und wie bei jedem detailorientierten Handwerk ist die geheime
Zutat hier Geduld. Hier ist unser Vorschlag für den Arbeitsablauf, wenn Sie auf diese Art von Problemen stoßen:
1. Lokalisieren Sie die Quelle der Abweichungen. Das Modell, das Sie konvertieren, hat wahrscheinlich bis zu einem gewissen Punkt nahezu identische innere Variablen.
bestimmten Punkt. Platzieren Sie `Breakpoint()`-Anweisungen in den Architekturen der beiden Frameworks und vergleichen Sie die Werte der
numerischen Variablen von oben nach unten, bis Sie die Quelle der Probleme gefunden haben.
2. Nachdem Sie nun die Ursache des Problems gefunden haben, setzen Sie sich mit dem 🤗 Transformers-Team in Verbindung. Es ist möglich
dass wir ein ähnliches Problem schon einmal gesehen haben und umgehend eine Lösung anbieten können. Als Ausweichmöglichkeit können Sie beliebte Seiten
wie StackOverflow und GitHub-Probleme.
3. Wenn keine Lösung in Sicht ist, bedeutet das, dass Sie tiefer gehen müssen. Die gute Nachricht ist, dass Sie das Problem gefunden haben.
Problem ausfindig gemacht haben, so dass Sie sich auf die problematische Anweisung konzentrieren und den Rest des Modells ausblenden können! Die schlechte Nachricht ist
dass Sie sich in die Quellimplementierung der besagten Anweisung einarbeiten müssen. In manchen Fällen finden Sie vielleicht ein
Problem mit einer Referenzimplementierung - verzichten Sie nicht darauf, ein Problem im Upstream-Repository zu öffnen.
In einigen Fällen können wir nach Rücksprache mit dem 🤗 Transformers-Team zu dem Schluss kommen, dass die Behebung der Abweichung nicht machbar ist.
Wenn die Abweichung in den Ausgabeschichten des Modells sehr klein ist (aber möglicherweise groß in den versteckten Zuständen), können wir
könnten wir beschließen, sie zu ignorieren und das Modell zu verteilen. Die oben erwähnte CLI `pt-to-tf` hat ein `--max-error`
Flag, um die Fehlermeldung bei der Gewichtskonvertierung zu überschreiben.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Generation with LLMs
[[open-in-colab]]
LLMs (Large Language Models) sind die Schlüsselkomponente bei der Texterstellung. Kurz gesagt, bestehen sie aus großen, vortrainierten Transformationsmodellen, die darauf trainiert sind, das nächste Wort (oder genauer gesagt Token) aus einem Eingabetext vorherzusagen. Da sie jeweils ein Token vorhersagen, müssen Sie etwas Aufwändigeres tun, um neue Sätze zu generieren, als nur das Modell aufzurufen - Sie müssen eine autoregressive Generierung durchführen.
Die autoregressive Generierung ist ein Verfahren zur Inferenzzeit, bei dem ein Modell mit seinen eigenen generierten Ausgaben iterativ aufgerufen wird, wenn einige anfängliche Eingaben vorliegen. In 🤗 Transformers wird dies von der Methode [`~generation.GenerationMixin.generate`] übernommen, die allen Modellen mit generativen Fähigkeiten zur Verfügung steht.
Dieses Tutorial zeigt Ihnen, wie Sie:
* Text mit einem LLM generieren
* Vermeiden Sie häufige Fallstricke
* Nächste Schritte, damit Sie das Beste aus Ihrem LLM herausholen können
Bevor Sie beginnen, stellen Sie sicher, dass Sie alle erforderlichen Bibliotheken installiert haben:
```bash
pip install transformers bitsandbytes>=0.39.0 -q
```
## Text generieren
Ein Sprachmodell, das für [causal language modeling](tasks/language_modeling) trainiert wurde, nimmt eine Folge von Text-Token als Eingabe und gibt die Wahrscheinlichkeitsverteilung für das nächste Token zurück.
<!-- [GIF 1 -- FWD PASS] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_1_1080p.mov"
></video>
<figcaption>"Forward pass of an LLM"</figcaption>
</figure>
Ein wichtiger Aspekt der autoregressiven Generierung mit LLMs ist die Auswahl des nächsten Tokens aus dieser Wahrscheinlichkeitsverteilung. In diesem Schritt ist alles möglich, solange Sie am Ende ein Token für die nächste Iteration haben. Das heißt, es kann so einfach sein wie die Auswahl des wahrscheinlichsten Tokens aus der Wahrscheinlichkeitsverteilung oder so komplex wie die Anwendung von einem Dutzend Transformationen vor der Stichprobenziehung aus der resultierenden Verteilung.
<!-- [GIF 2 -- TEXT GENERATION] -->
<figure class="image table text-center m-0 w-full">
<video
style="max-width: 90%; margin: auto;"
autoplay loop muted playsinline
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/assisted-generation/gif_2_1080p.mov"
></video>
<figcaption>"Die autoregressive Generierung wählt iterativ das nächste Token aus einer Wahrscheinlichkeitsverteilung aus, um Text zu erzeugen"</figcaption>
</figure>
Der oben dargestellte Prozess wird iterativ wiederholt, bis eine bestimmte Abbruchbedingung erreicht ist. Im Idealfall wird die Abbruchbedingung vom Modell vorgegeben, das lernen sollte, wann es ein Ende-der-Sequenz-Token (EOS) ausgeben muss. Ist dies nicht der Fall, stoppt die Generierung, wenn eine vordefinierte Maximallänge erreicht ist.
Damit sich Ihr Modell so verhält, wie Sie es für Ihre Aufgabe erwarten, müssen Sie den Schritt der Token-Auswahl und die Abbruchbedingung richtig einstellen. Aus diesem Grund haben wir zu jedem Modell eine [`~generation.GenerationConfig`]-Datei, die eine gute generative Standardparametrisierung enthält und zusammen mit Ihrem Modell geladen wird.
Lassen Sie uns über Code sprechen!
<Tip>
Wenn Sie an der grundlegenden Verwendung von LLMs interessiert sind, ist unsere High-Level-Schnittstelle [`Pipeline`](pipeline_tutorial) ein guter Ausgangspunkt. LLMs erfordern jedoch oft fortgeschrittene Funktionen wie Quantisierung und Feinsteuerung des Token-Auswahlschritts, was am besten über [`~generation.GenerationMixin.generate`] erfolgt. Die autoregressive Generierung mit LLMs ist ebenfalls ressourcenintensiv und sollte für einen angemessenen Durchsatz auf einer GPU ausgeführt werden.
</Tip>
<!-- TODO: update example to llama 2 (or a newer popular baseline) when it becomes ungated -->
Zunächst müssen Sie das Modell laden.
```py
>>> from transformers import AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
Sie werden zwei Flags in dem Aufruf `from_pretrained` bemerken:
- `device_map` stellt sicher, dass das Modell auf Ihre GPU(s) übertragen wird
- `load_in_4bit` wendet [dynamische 4-Bit-Quantisierung](main_classes/quantization) an, um die Ressourcenanforderungen massiv zu reduzieren
Es gibt noch andere Möglichkeiten, ein Modell zu initialisieren, aber dies ist eine gute Grundlage, um mit einem LLM zu beginnen.
Als nächstes müssen Sie Ihre Texteingabe mit einem [tokenizer](tokenizer_summary) vorverarbeiten.
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> model_inputs = tokenizer(["A list of colors: red, blue"], return_tensors="pt").to("cuda")
```
Die Variable `model_inputs` enthält die tokenisierte Texteingabe sowie die Aufmerksamkeitsmaske. Obwohl [`~generation.GenerationMixin.generate`] sein Bestes tut, um die Aufmerksamkeitsmaske abzuleiten, wenn sie nicht übergeben wird, empfehlen wir, sie für optimale Ergebnisse wann immer möglich zu übergeben.
Rufen Sie schließlich die Methode [~generation.GenerationMixin.generate] auf, um die generierten Token zurückzugeben, die vor dem Drucken in Text umgewandelt werden sollten.
```py
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A list of colors: red, blue, green, yellow, black, white, and brown'
```
Und das war's! Mit ein paar Zeilen Code können Sie sich die Macht eines LLM zunutze machen.
## Häufige Fallstricke
Es gibt viele [Generierungsstrategien](generation_strategies), und manchmal sind die Standardwerte für Ihren Anwendungsfall vielleicht nicht geeignet. Wenn Ihre Ausgaben nicht mit dem übereinstimmen, was Sie erwarten, haben wir eine Liste der häufigsten Fallstricke erstellt und wie Sie diese vermeiden können.
```py
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model = AutoModelForCausalLM.from_pretrained(
... "openlm-research/open_llama_7b", device_map="auto", load_in_4bit=True
... )
```
### Generierte Ausgabe ist zu kurz/lang
Wenn in der Datei [~generation.GenerationConfig`] nichts angegeben ist, gibt `generate` standardmäßig bis zu 20 Token zurück. Wir empfehlen dringend, `max_new_tokens` in Ihrem `generate`-Aufruf manuell zu setzen, um die maximale Anzahl neuer Token zu kontrollieren, die zurückgegeben werden können. Beachten Sie, dass LLMs (genauer gesagt, [decoder-only models](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)) auch die Eingabeaufforderung als Teil der Ausgabe zurückgeben.
```py
>>> model_inputs = tokenizer(["A sequence of numbers: 1, 2"], return_tensors="pt").to("cuda")
>>> # By default, the output will contain up to 20 tokens
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5'
>>> # Setting `max_new_tokens` allows you to control the maximum length
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=50)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'A sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,'
```
### Falscher Generierungsmodus
Standardmäßig und sofern nicht in der Datei [~generation.GenerationConfig`] angegeben, wählt `generate` bei jeder Iteration das wahrscheinlichste Token aus (gierige Dekodierung). Je nach Aufgabe kann dies unerwünscht sein; kreative Aufgaben wie Chatbots oder das Schreiben eines Aufsatzes profitieren vom Sampling. Andererseits profitieren Aufgaben, bei denen es auf die Eingabe ankommt, wie z.B. Audiotranskription oder Übersetzung, von der gierigen Dekodierung. Aktivieren Sie das Sampling mit `do_sample=True`. Mehr zu diesem Thema erfahren Sie in diesem [Blogbeitrag] (https://huggingface.co/blog/how-to-generate).
```py
>>> # Set seed or reproducibility -- you don't need this unless you want full reproducibility
>>> from transformers import set_seed
>>> set_seed(0)
>>> model_inputs = tokenizer(["I am a cat."], return_tensors="pt").to("cuda")
>>> # LLM + greedy decoding = repetitive, boring output
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat. I am a cat. I am a cat. I am a cat'
>>> # With sampling, the output becomes more creative!
>>> generated_ids = model.generate(**model_inputs, do_sample=True)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'I am a cat.\nI just need to be. I am always.\nEvery time'
```
### Falsche Auffüllseite
LLMs sind [decoder-only](https://huggingface.co/learn/nlp-course/chapter1/6?fw=pt)-Architekturen, d.h. sie iterieren weiter über Ihre Eingabeaufforderung. Wenn Ihre Eingaben nicht die gleiche Länge haben, müssen sie aufgefüllt werden. Da LLMs nicht darauf trainiert sind, mit aufgefüllten Token fortzufahren, muss Ihre Eingabe links aufgefüllt werden. Vergessen Sie auch nicht, die Aufmerksamkeitsmaske an generate zu übergeben!
```py
>>> # The tokenizer initialized above has right-padding active by default: the 1st sequence,
>>> # which is shorter, has padding on the right side. Generation fails.
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)[0]
''
>>> # With left-padding, it works as expected!
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b", padding_side="left")
>>> tokenizer.pad_token = tokenizer.eos_token # Llama has no pad token by default
>>> model_inputs = tokenizer(
... ["1, 2, 3", "A, B, C, D, E"], padding=True, return_tensors="pt"
... ).to("cuda")
>>> generated_ids = model.generate(**model_inputs)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
'1, 2, 3, 4, 5, 6,'
```
<!-- TODO: when the prompting guide is ready, mention the importance of setting the right prompt in this section -->
## Weitere Ressourcen
Während der Prozess der autoregressiven Generierung relativ einfach ist, kann die optimale Nutzung Ihres LLM ein schwieriges Unterfangen sein, da es viele bewegliche Teile gibt. Für Ihre nächsten Schritte, die Ihnen helfen, tiefer in die LLM-Nutzung und das Verständnis einzutauchen:
<!-- TODO: mit neuen Anleitungen vervollständigen -->
### Fortgeschrittene Nutzung generieren
1. [Leitfaden](generation_strategies) zur Steuerung verschiedener Generierungsmethoden, zur Einrichtung der Generierungskonfigurationsdatei und zum Streaming der Ausgabe;
2. API-Referenz zu [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`] und [generate-bezogene Klassen](internal/generation_utils).
### LLM-Ranglisten
1. [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), das sich auf die Qualität der Open-Source-Modelle konzentriert;
2. [Open LLM-Perf Leaderboard](https://huggingface.co/spaces/optimum/llm-perf-leaderboard), das sich auf den LLM-Durchsatz konzentriert.
### Latenz und Durchsatz
1. [Leitfaden](main_classes/quantization) zur dynamischen Quantisierung, der Ihnen zeigt, wie Sie Ihren Speicherbedarf drastisch reduzieren können.
### Verwandte Bibliotheken
1. [text-generation-inference](https://github.com/huggingface/text-generation-inference), ein produktionsreifer Server für LLMs;
2. [`optimum`](https://github.com/huggingface/optimum), eine Erweiterung von 🤗 Transformers, die für bestimmte Hardware-Geräte optimiert.
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Adapter mit 🤗 PEFT laden
[[open-in-colab]]
Die [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) Methoden frieren die vorab trainierten Modellparameter während der Feinabstimmung ein und fügen eine kleine Anzahl trainierbarer Parameter (die Adapter) hinzu. Die Adapter werden trainiert, um aufgabenspezifische Informationen zu lernen. Es hat sich gezeigt, dass dieser Ansatz sehr speichereffizient ist und weniger Rechenleistung beansprucht, während die Ergebnisse mit denen eines vollständig feinabgestimmten Modells vergleichbar sind.
Adapter, die mit PEFT trainiert wurden, sind in der Regel um eine Größenordnung kleiner als das vollständige Modell, so dass sie bequem gemeinsam genutzt, gespeichert und geladen werden können.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Die Adaptergewichte für ein OPTForCausalLM-Modell, die auf dem Hub gespeichert sind, sind nur ~6MB groß, verglichen mit der vollen Größe der Modellgewichte, die ~700MB betragen können.</figcaption>
</div>
Wenn Sie mehr über die 🤗 PEFT-Bibliothek erfahren möchten, sehen Sie sich die [Dokumentation](https://huggingface.co/docs/peft/index) an.
## Setup
Starten Sie mit der Installation von 🤗 PEFT:
```bash
pip install peft
```
Wenn Sie die brandneuen Funktionen ausprobieren möchten, sollten Sie die Bibliothek aus dem Quellcode installieren:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## Unterstützte PEFT-Modelle
Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal oder auf dem Hub gespeicherte Adaptergewichte laden und sie mit wenigen Zeilen Code einfach ausführen oder trainieren. Die folgenden Methoden werden unterstützt:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index).
## Laden Sie einen PEFT-Adapter
Um ein PEFT-Adaptermodell von 🤗 Transformers zu laden und zu verwenden, stellen Sie sicher, dass das Hub-Repository oder das lokale Verzeichnis eine `adapter_config.json`-Datei und die Adaptergewichte enthält, wie im obigen Beispielbild gezeigt. Dann können Sie das PEFT-Adaptermodell mit der Klasse `AutoModelFor` laden. Um zum Beispiel ein PEFT-Adaptermodell für die kausale Sprachmodellierung zu laden:
1. Geben Sie die PEFT-Modell-ID an.
2. übergeben Sie es an die Klasse [`AutoModelForCausalLM`].
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden.
</Tip>
Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## Laden in 8bit oder 4bit
Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
```
## Einen neuen Adapter hinzufügen
Sie können [`~peft.PeftModel.add_adapter`] verwenden, um einen neuen Adapter zu einem Modell mit einem bestehenden Adapter hinzuzufügen, solange der neue Adapter vom gleichen Typ ist wie der aktuelle Adapter. Wenn Sie zum Beispiel einen bestehenden LoRA-Adapter an ein Modell angehängt haben:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
Um einen neuen Adapter hinzuzufügen:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
Jetzt können Sie mit [`~peft.PeftModel.set_adapter`] festlegen, welcher Adapter verwendet werden soll:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## Aktivieren und Deaktivieren von Adaptern
Sobald Sie einen Adapter zu einem Modell hinzugefügt haben, können Sie das Adaptermodul aktivieren oder deaktivieren. So aktivieren Sie das Adaptermodul:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
So deaktivieren Sie das Adaptermodul:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## PEFT-Adapter trainieren
PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren:
<Tip>
Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training).
</Tip>
1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun).
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. Fügen Sie dem Modell einen Adapter hinzu.
```py
model.add_adapter(peft_config)
```
3. Jetzt können Sie das Modell an [`Trainer`] übergeben!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
So speichern Sie Ihren trainierten Adapter und laden ihn wieder:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
<!--
TODO: (@younesbelkada @stevhliu)
- Link to PEFT docs for further details
- Trainer
- 8-bit / 4-bit examples ?
-->
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Trainieren mit einem Skript
Neben den 🤗 Transformers [notebooks](./noteboks/README) gibt es auch Beispielskripte, die zeigen, wie man ein Modell für eine Aufgabe mit [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) oder [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax) trainiert.
Sie werden auch Skripte finden, die wir in unseren [Forschungsprojekten](https://github.com/huggingface/transformers/tree/main/examples/research_projects) und [Legacy-Beispielen](https://github.com/huggingface/transformers/tree/main/examples/legacy) verwendet haben und die größtenteils von der Community stammen. Diese Skripte werden nicht aktiv gepflegt und erfordern eine bestimmte Version von 🤗 Transformers, die höchstwahrscheinlich nicht mit der neuesten Version der Bibliothek kompatibel ist.
Es wird nicht erwartet, dass die Beispielskripte bei jedem Problem sofort funktionieren. Möglicherweise müssen Sie das Skript an das Problem anpassen, das Sie zu lösen versuchen. Um Ihnen dabei zu helfen, legen die meisten Skripte vollständig offen, wie die Daten vorverarbeitet werden, so dass Sie sie nach Bedarf für Ihren Anwendungsfall bearbeiten können.
Für jede Funktion, die Sie in einem Beispielskript implementieren möchten, diskutieren Sie bitte im [Forum] (https://discuss.huggingface.co/) oder in einem [issue] (https://github.com/huggingface/transformers/issues), bevor Sie einen Pull Request einreichen. Wir freuen uns zwar über Fehlerkorrekturen, aber es ist unwahrscheinlich, dass wir einen Pull Request zusammenführen, der mehr Funktionalität auf Kosten der Lesbarkeit hinzufügt.
Diese Anleitung zeigt Ihnen, wie Sie ein Beispiel für ein Trainingsskript zur Zusammenfassung in [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) und [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) ausführen können. Sofern nicht anders angegeben, sollten alle Beispiele mit beiden Frameworks funktionieren.
## Einrichtung
Um die neueste Version der Beispielskripte erfolgreich auszuführen, **müssen Sie 🤗 Transformers aus dem Quellcode** in einer neuen virtuellen Umgebung installieren:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
```
Für ältere Versionen der Beispielskripte klicken Sie auf die Umschalttaste unten:
<details>
<summary>Beispiele für ältere Versionen von 🤗 Transformers</summary>
<ul>
<li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li>
</ul>
</details>
Dann stellen Sie Ihren aktuellen Klon von 🤗 Transformers auf eine bestimmte Version um, z.B. v3.5.1:
```bash
git checkout tags/v3.5.1
```
Nachdem Sie die richtige Bibliotheksversion eingerichtet haben, navigieren Sie zu dem Beispielordner Ihrer Wahl und installieren die beispielspezifischen Anforderungen:
```bash
pip install -r requirements.txt
```
## Ein Skript ausführen
<frameworkcontent>
<pt>
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Dann nimmt das Skript eine Feinabstimmung eines Datensatzes mit dem [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) auf einer Architektur vor, die eine Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/t5-small) auf dem Datensatz [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
Das Beispielskript lädt einen Datensatz aus der 🤗 [Datasets](https://huggingface.co/docs/datasets/) Bibliothek herunter und verarbeitet ihn vor. Anschließend nimmt das Skript die Feinabstimmung eines Datensatzes mit Keras auf einer Architektur vor, die die Zusammenfassung unterstützt. Das folgende Beispiel zeigt, wie die Feinabstimmung von [T5-small](https://huggingface.co/t5-small) auf dem [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail) Datensatz durchgeführt wird. Das T5-Modell benötigt aufgrund der Art und Weise, wie es trainiert wurde, ein zusätzliches Argument `source_prefix`. Mit dieser Eingabeaufforderung weiß T5, dass es sich um eine Zusammenfassungsaufgabe handelt.
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Verteiltes Training und gemischte Präzision
Der [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) unterstützt verteiltes Training und gemischte Präzision, d.h. Sie können ihn auch in einem Skript verwenden. So aktivieren Sie diese beiden Funktionen:
- Fügen Sie das Argument `fp16` hinzu, um gemischte Genauigkeit zu aktivieren.
- Legen Sie die Anzahl der zu verwendenden GPUs mit dem Argument `nproc_per_node` fest.
```bash
python -m torch.distributed.launch \
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
--fp16 \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
TensorFlow-Skripte verwenden eine [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) für verteiltes Training, und Sie müssen dem Trainingsskript keine zusätzlichen Argumente hinzufügen. Das TensorFlow-Skript verwendet standardmäßig mehrere GPUs, wenn diese verfügbar sind.
## Ein Skript auf einer TPU ausführen
<frameworkcontent>
<pt>
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. PyTorch unterstützt TPUs mit dem [XLA](https://www.tensorflow.org/xla) Deep Learning Compiler (siehe [hier](https://github.com/pytorch/xla/blob/master/README.md) für weitere Details). Um eine TPU zu verwenden, starten Sie das Skript `xla_spawn.py` und verwenden das Argument `num_cores`, um die Anzahl der TPU-Kerne festzulegen, die Sie verwenden möchten.
```bash
python xla_spawn.py --num_cores 8 \
summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
Tensor Processing Units (TPUs) sind speziell für die Beschleunigung der Leistung konzipiert. TensorFlow Skripte verwenden eine [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) für das Training auf TPUs. Um eine TPU zu verwenden, übergeben Sie den Namen der TPU-Ressource an das Argument `tpu`.
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Führen Sie ein Skript mit 🤗 Accelerate aus.
🤗 [Accelerate](https://huggingface.co/docs/accelerate) ist eine reine PyTorch-Bibliothek, die eine einheitliche Methode für das Training eines Modells auf verschiedenen Arten von Setups (nur CPU, mehrere GPUs, TPUs) bietet und dabei die vollständige Transparenz der PyTorch-Trainingsschleife beibehält. Stellen Sie sicher, dass Sie 🤗 Accelerate installiert haben, wenn Sie es nicht bereits haben:
> Hinweis: Da Accelerate schnell weiterentwickelt wird, muss die Git-Version von Accelerate installiert sein, um die Skripte auszuführen.
```bash
pip install git+https://github.com/huggingface/accelerate
```
Anstelle des Skripts `run_summarization.py` müssen Sie das Skript `run_summarization_no_trainer.py` verwenden. Die von Accelerate unterstützten Skripte haben eine Datei `task_no_trainer.py` im Ordner. Beginnen Sie mit dem folgenden Befehl, um eine Konfigurationsdatei zu erstellen und zu speichern:
```bash
accelerate config
```
Testen Sie Ihre Einrichtung, um sicherzustellen, dass sie korrekt konfiguriert ist:
```bash
accelerate test
```
Jetzt sind Sie bereit, das Training zu starten:
```bash
accelerate launch run_summarization_no_trainer.py \
--model_name_or_path t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir ~/tmp/tst-summarization
```
## Verwenden Sie einen benutzerdefinierten Datensatz
Das Verdichtungsskript unterstützt benutzerdefinierte Datensätze, solange es sich um eine CSV- oder JSON-Line-Datei handelt. Wenn Sie Ihren eigenen Datensatz verwenden, müssen Sie mehrere zusätzliche Argumente angeben:
- `train_file` und `validation_file` geben den Pfad zu Ihren Trainings- und Validierungsdateien an.
- text_column` ist der Eingabetext, der zusammengefasst werden soll.
- Summary_column" ist der auszugebende Zieltext.
Ein Zusammenfassungsskript, das einen benutzerdefinierten Datensatz verwendet, würde wie folgt aussehen:
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--text_column text_column_name \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Testen Sie ein Skript
Es ist oft eine gute Idee, Ihr Skript an einer kleineren Anzahl von Beispielen für Datensätze auszuführen, um sicherzustellen, dass alles wie erwartet funktioniert, bevor Sie sich auf einen ganzen Datensatz festlegen, dessen Fertigstellung Stunden dauern kann. Verwenden Sie die folgenden Argumente, um den Datensatz auf eine maximale Anzahl von Stichproben zu beschränken:
- `max_train_samples`
- `max_eval_samples`
- `max_predict_samples`
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path t5-small \
--max_train_samples 50 \
--max_eval_samples 50 \
--max_predict_samples 50 \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
Nicht alle Beispielskripte unterstützen das Argument `max_predict_samples`. Wenn Sie sich nicht sicher sind, ob Ihr Skript dieses Argument unterstützt, fügen Sie das Argument `-h` hinzu, um dies zu überprüfen:
```bash
examples/pytorch/summarization/run_summarization.py -h
```
## Training vom Kontrollpunkt fortsetzen
Eine weitere hilfreiche Option, die Sie aktivieren können, ist die Wiederaufnahme des Trainings von einem früheren Kontrollpunkt aus. Auf diese Weise können Sie im Falle einer Unterbrechung Ihres Trainings dort weitermachen, wo Sie aufgehört haben, ohne von vorne beginnen zu müssen. Es gibt zwei Methoden, um das Training von einem Kontrollpunkt aus wieder aufzunehmen.
Die erste Methode verwendet das Argument `output_dir previous_output_dir`, um das Training ab dem letzten in `output_dir` gespeicherten Kontrollpunkt wieder aufzunehmen. In diesem Fall sollten Sie `overwrite_output_dir` entfernen:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
Die zweite Methode verwendet das Argument `Resume_from_checkpoint path_to_specific_checkpoint`, um das Training ab einem bestimmten Checkpoint-Ordner wieder aufzunehmen.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
## Teilen Sie Ihr Modell
Alle Skripte können Ihr endgültiges Modell in den [Model Hub](https://huggingface.co/models) hochladen. Stellen Sie sicher, dass Sie bei Hugging Face angemeldet sind, bevor Sie beginnen:
```bash
huggingface-cli login
```
Dann fügen Sie dem Skript das Argument `push_to_hub` hinzu. Mit diesem Argument wird ein Repository mit Ihrem Hugging Face-Benutzernamen und dem in `output_dir` angegebenen Ordnernamen erstellt.
Wenn Sie Ihrem Repository einen bestimmten Namen geben möchten, fügen Sie ihn mit dem Argument `push_to_hub_model_id` hinzu. Das Repository wird automatisch unter Ihrem Namensraum aufgeführt.
Das folgende Beispiel zeigt, wie Sie ein Modell mit einem bestimmten Repository-Namen hochladen können:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--push_to_hub \
--push_to_hub_model_id finetuned-t5-cnn_dailymail \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
\ No newline at end of file
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Transformers Agents
<Tip warning={true}>
Transformers Agents ist eine experimentelle API, die jederzeit geändert werden kann. Die von den Agenten zurückgegebenen Ergebnisse
zurückgegeben werden, können variieren, da sich die APIs oder die zugrunde liegenden Modelle ändern können.
</Tip>
Transformers Version v4.29.0, die auf dem Konzept von *Tools* und *Agenten* aufbaut. Sie können damit spielen in
[dieses Colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj).
Kurz gesagt, es bietet eine API für natürliche Sprache auf der Grundlage von Transformers: Wir definieren eine Reihe von kuratierten Tools und entwerfen einen
Agenten, um natürliche Sprache zu interpretieren und diese Werkzeuge zu verwenden. Es ist von vornherein erweiterbar; wir haben einige relevante Tools kuratiert,
aber wir werden Ihnen zeigen, wie das System einfach erweitert werden kann, um jedes von der Community entwickelte Tool zu verwenden.
Beginnen wir mit einigen Beispielen dafür, was mit dieser neuen API erreicht werden kann. Sie ist besonders leistungsfähig, wenn es um
Sie ist besonders leistungsstark, wenn es um multimodale Aufgaben geht. Lassen Sie uns also eine Runde drehen, um Bilder zu erzeugen und Text vorzulesen.
```py
agent.run("Caption the following image", image=image)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water |
---
```py
agent.run("Read the following text out loud", text=text)
```
| **Input** | **Output** |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio>
---
```py
agent.run(
"In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?",
document=document,
)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer |
## Schnellstart
Bevor Sie `agent.run` verwenden können, müssen Sie einen Agenten instanziieren, der ein großes Sprachmodell (LLM) ist.
Wir bieten Unterstützung für openAI-Modelle sowie für OpenSource-Alternativen von BigCode und OpenAssistant. Die openAI
Modelle sind leistungsfähiger (erfordern aber einen openAI-API-Schlüssel, können also nicht kostenlos verwendet werden); Hugging Face
bietet kostenlosen Zugang zu Endpunkten für BigCode- und OpenAssistant-Modelle.
To start with, please install the `agents` extras in order to install all default dependencies.
```bash
pip install transformers[agents]
```
Um openAI-Modelle zu verwenden, instanziieren Sie einen [`OpenAiAgent`], nachdem Sie die `openai`-Abhängigkeit installiert haben:
```bash
pip install openai
```
```py
from transformers import OpenAiAgent
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")
```
Um BigCode oder OpenAssistant zu verwenden, melden Sie sich zunächst an, um Zugriff auf die Inference API zu erhalten:
```py
from huggingface_hub import login
login("<YOUR_TOKEN>")
```
Dann instanziieren Sie den Agenten
```py
from transformers import HfAgent
# Starcoder
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
# StarcoderBase
# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")
# OpenAssistant
# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")
```
Dies geschieht mit der Inferenz-API, die Hugging Face derzeit kostenlos zur Verfügung stellt. Wenn Sie Ihren eigenen Inferenz
Endpunkt für dieses Modell (oder einen anderen) haben, können Sie die obige URL durch Ihren URL-Endpunkt ersetzen.
<Tip>
StarCoder und OpenAssistant sind kostenlos und leisten bei einfachen Aufgaben bewundernswert gute Arbeit. Allerdings halten die Kontrollpunkte
nicht, wenn es um komplexere Aufforderungen geht. Wenn Sie mit einem solchen Problem konfrontiert sind, empfehlen wir Ihnen, das OpenAI
Modell auszuprobieren, das zwar leider nicht quelloffen ist, aber zur Zeit eine bessere Leistung erbringt.
</Tip>
Sie sind jetzt startklar! Lassen Sie uns in die beiden APIs eintauchen, die Ihnen jetzt zur Verfügung stehen.
### Einzelne Ausführung (run)
Die Methode der einmaligen Ausführung ist die Verwendung der [`~Agent.run`] Methode des Agenten:
```py
agent.run("Draw me a picture of rivers and lakes.")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
Es wählt automatisch das (oder die) Werkzeug(e) aus, das (die) für die von Ihnen gewünschte Aufgabe geeignet ist (sind) und führt es (sie) entsprechend aus. Es
kann eine oder mehrere Aufgaben in der gleichen Anweisung ausführen (je komplexer Ihre Anweisung ist, desto wahrscheinlicher ist ein
der Agent scheitern).
```py
agent.run("Draw me a picture of the sea then transform the picture to add an island")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200>
<br/>
Jede [`~Agent.run`] Operation ist unabhängig, so dass Sie sie mehrmals hintereinander mit unterschiedlichen Aufgaben ausführen können.
Beachten Sie, dass Ihr `Agent` nur ein großsprachiges Modell ist, so dass kleine Variationen in Ihrer Eingabeaufforderung völlig unterschiedliche Ergebnisse liefern können.
unterschiedliche Ergebnisse liefern. Es ist wichtig, dass Sie die Aufgabe, die Sie ausführen möchten, so genau wie möglich erklären. Wir gehen noch weiter ins Detail
wie man gute Prompts schreibt [hier](custom_tools#writing-good-user-inputs).
Wenn Sie einen Status über Ausführungszeiten hinweg beibehalten oder dem Agenten Nicht-Text-Objekte übergeben möchten, können Sie dies tun, indem Sie
Variablen, die der Agent verwenden soll. Sie könnten zum Beispiel das erste Bild von Flüssen und Seen erzeugen,
und das Modell bitten, dieses Bild zu aktualisieren und eine Insel hinzuzufügen, indem Sie Folgendes tun:
```python
picture = agent.run("Generate a picture of rivers and lakes.")
updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture)
```
<Tip>
Dies kann hilfreich sein, wenn das Modell Ihre Anfrage nicht verstehen kann und die Werkzeuge verwechselt. Ein Beispiel wäre:
```py
agent.run("Draw me the picture of a capybara swimming in the sea")
```
Hier könnte das Modell auf zwei Arten interpretieren:
- Die Funktion `Text-zu-Bild` erzeugt ein Wasserschwein, das im Meer schwimmt.
- Oder Sie lassen das `Text-zu-Bild` ein Wasserschwein erzeugen und verwenden dann das Werkzeug `Bildtransformation`, um es im Meer schwimmen zu lassen.
Falls Sie das erste Szenario erzwingen möchten, können Sie dies tun, indem Sie die Eingabeaufforderung als Argument übergeben:
```py
agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea")
```
</Tip>
### Chat-basierte Ausführung (Chat)
Der Agent verfügt auch über einen Chat-basierten Ansatz, der die Methode [`~Agent.chat`] verwendet:
```py
agent.chat("Generate a picture of rivers and lakes")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
```py
agent.chat("Transform the picture so that there is a rock in there")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200>
<br/>
Dies ist ein interessanter Ansatz, wenn Sie den Zustand über Anweisungen hinweg beibehalten möchten. Er ist besser für Experimente geeignet,
eignet sich aber eher für einzelne Anweisungen als für komplexe Anweisungen (die die [`~Agent.run`]
Methode besser verarbeiten kann).
Diese Methode kann auch Argumente entgegennehmen, wenn Sie Nicht-Text-Typen oder bestimmte Aufforderungen übergeben möchten.
### ⚠️ Fernausführung
Zu Demonstrationszwecken und damit es mit allen Setups verwendet werden kann, haben wir Remote-Executors für mehrere
der Standard-Tools erstellt, auf die der Agent in dieser Version Zugriff hat. Diese werden erstellt mit
[inference endpoints](https://huggingface.co/inference-endpoints).
Wir haben diese vorerst deaktiviert, aber um zu sehen, wie Sie selbst Remote Executors Tools einrichten können,
empfehlen wir die Lektüre des [custom tool guide](./custom_tools).
### Was passiert hier? Was sind Tools und was sind Agenten?
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png">
#### Agenten
Der "Agent" ist hier ein großes Sprachmodell, das wir auffordern, Zugang zu einem bestimmten Satz von Tools zu erhalten.
LLMs sind ziemlich gut darin, kleine Codeproben zu erzeugen. Diese API macht sich das zunutze, indem sie das
LLM ein kleines Codebeispiel gibt, das eine Aufgabe mit einer Reihe von Werkzeugen ausführt. Diese Aufforderung wird dann ergänzt durch die
Aufgabe, die Sie Ihrem Agenten geben, und die Beschreibung der Werkzeuge, die Sie ihm geben. Auf diese Weise erhält er Zugriff auf die Dokumentation der
Tools, insbesondere die erwarteten Eingaben und Ausgaben, und kann den entsprechenden Code generieren.
#### Tools
Tools sind sehr einfach: Sie bestehen aus einer einzigen Funktion mit einem Namen und einer Beschreibung. Wir verwenden dann die Beschreibungen dieser Tools
um den Agenten aufzufordern. Anhand der Eingabeaufforderung zeigen wir dem Agenten, wie er die Tools nutzen kann, um das zu tun, was in der
in der Abfrage angefordert wurde.
Dies geschieht mit brandneuen Tools und nicht mit Pipelines, denn der Agent schreibt besseren Code mit sehr atomaren Tools.
Pipelines sind stärker refaktorisiert und fassen oft mehrere Aufgaben in einer einzigen zusammen. Tools sind dafür gedacht, sich auf
eine einzige, sehr einfache Aufgabe konzentrieren.
#### Code-Ausführung?!
Dieser Code wird dann mit unserem kleinen Python-Interpreter auf den mit Ihren Tools übergebenen Eingaben ausgeführt.
Wir hören Sie schon schreien "Willkürliche Codeausführung!", aber lassen Sie uns erklären, warum das nicht der Fall ist.
Die einzigen Funktionen, die aufgerufen werden können, sind die von Ihnen zur Verfügung gestellten Tools und die Druckfunktion, so dass Sie bereits eingeschränkt sind
eingeschränkt, was ausgeführt werden kann. Sie sollten sicher sein, wenn es sich auf die Werkzeuge für das Umarmungsgesicht beschränkt.
Dann lassen wir keine Attributsuche oder Importe zu (die ohnehin nicht benötigt werden, um die
Inputs/Outputs an eine kleine Gruppe von Funktionen), so dass alle offensichtlichen Angriffe (und Sie müssten den LLM
dazu auffordern, sie auszugeben) kein Problem darstellen sollten. Wenn Sie auf Nummer sicher gehen wollen, können Sie die
run()-Methode mit dem zusätzlichen Argument return_code=True ausführen. In diesem Fall gibt der Agent nur den auszuführenden Code
zur Ausführung zurück und Sie können entscheiden, ob Sie ihn ausführen möchten oder nicht.
Die Ausführung bricht bei jeder Zeile ab, in der versucht wird, eine illegale Operation auszuführen, oder wenn ein regulärer Python-Fehler
mit dem vom Agenten generierten Code.
### Ein kuratierter Satz von Tools
Wir haben eine Reihe von Tools identifiziert, die solche Agenten unterstützen können. Hier ist eine aktualisierte Liste der Tools, die wir integriert haben
in `transformers` integriert haben:
- **Beantwortung von Fragen zu Dokumenten**: Beantworten Sie anhand eines Dokuments (z.B. PDF) im Bildformat eine Frage zu diesem Dokument ([Donut](./model_doc/donut))
- Beantworten von Textfragen**: Geben Sie einen langen Text und eine Frage an, beantworten Sie die Frage im Text ([Flan-T5](./model_doc/flan-t5))
- **Unbedingte Bildunterschriften**: Beschriften Sie das Bild! ([BLIP](./model_doc/blip))
- **Bildfragebeantwortung**: Beantworten Sie bei einem Bild eine Frage zu diesem Bild ([VILT](./model_doc/vilt))
- **Bildsegmentierung**: Geben Sie ein Bild und einen Prompt an und geben Sie die Segmentierungsmaske dieses Prompts aus ([CLIPSeg](./model_doc/clipseg))
- **Sprache in Text**: Geben Sie eine Audioaufnahme einer sprechenden Person an und transkribieren Sie die Sprache in Text ([Whisper](./model_doc/whisper))
- **Text in Sprache**: wandelt Text in Sprache um ([SpeechT5](./model_doc/speecht5))
- **Zero-Shot-Textklassifizierung**: Ermitteln Sie anhand eines Textes und einer Liste von Bezeichnungen, welcher Bezeichnung der Text am ehesten entspricht ([BART](./model_doc/bart))
- **Textzusammenfassung**: fassen Sie einen langen Text in einem oder wenigen Sätzen zusammen ([BART](./model_doc/bart))
- **Übersetzung**: Übersetzen des Textes in eine bestimmte Sprache ([NLLB](./model_doc/nllb))
Diese Tools sind in Transformatoren integriert und können auch manuell verwendet werden, zum Beispiel:
```py
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### Benutzerdefinierte Tools
Wir haben zwar eine Reihe von Tools identifiziert, sind aber der festen Überzeugung, dass der Hauptwert dieser Implementierung darin besteht
die Möglichkeit, benutzerdefinierte Tools schnell zu erstellen und weiterzugeben.
Indem Sie den Code eines Tools in einen Hugging Face Space oder ein Modell-Repository stellen, können Sie das Tool
direkt mit dem Agenten nutzen. Wir haben ein paar neue Funktionen hinzugefügt
**transformers-agnostic** Tools zur [`huggingface-tools` Organisation](https://huggingface.co/huggingface-tools) hinzugefügt:
- **Text-Downloader**: zum Herunterladen eines Textes von einer Web-URL
- **Text zu Bild**: erzeugt ein Bild nach einer Eingabeaufforderung und nutzt dabei stabile Diffusion
- **Bildtransformation**: verändert ein Bild anhand eines Ausgangsbildes und einer Eingabeaufforderung, unter Ausnutzung der stabilen pix2pix-Diffusion
- **Text zu Video**: Erzeugen eines kleinen Videos nach einer Eingabeaufforderung, unter Verwendung von damo-vilab
Das Text-zu-Bild-Tool, das wir von Anfang an verwendet haben, ist ein Remote-Tool, das sich in
[*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)! Wir werden
weiterhin solche Tools für diese und andere Organisationen veröffentlichen, um diese Implementierung weiter zu verbessern.
Die Agenten haben standardmäßig Zugriff auf die Tools, die sich auf [*huggingface-tools*](https://huggingface.co/huggingface-tools) befinden.
Wie Sie Ihre eigenen Tools schreiben und freigeben können und wie Sie jedes benutzerdefinierte Tool, das sich auf dem Hub befindet, nutzen können, erklären wir in [folgender Anleitung](custom_tools).
### Code-Erzeugung
Bisher haben wir gezeigt, wie Sie die Agenten nutzen können, um Aktionen für Sie durchzuführen. Der Agent generiert jedoch nur Code
den wir dann mit einem sehr eingeschränkten Python-Interpreter ausführen. Falls Sie den generierten Code in einer anderen Umgebung verwenden möchten
einer anderen Umgebung verwenden möchten, können Sie den Agenten auffordern, den Code zusammen mit einer Tooldefinition und genauen Importen zurückzugeben.
Zum Beispiel die folgende Anweisung
```python
agent.run("Draw me a picture of rivers and lakes", return_code=True)
```
gibt den folgenden Code zurück
```python
from transformers import load_tool
image_generator = load_tool("huggingface-tools/text-to-image")
image = image_generator(prompt="rivers and lakes")
```
die Sie dann selbst ändern und ausführen können.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment