Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
ef28df05
"docs/img/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "9786650518b8aa03e6bf71acf5d35170b782e0df"
Commit
ef28df05
authored
Mar 22, 2023
by
Sylvain
Browse files
Fix quality due to ruff release
parent
73fdc8c5
Changes
28
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
30 additions
and
34 deletions
+30
-34
examples/flax/language-modeling/run_bart_dlm_flax.py
examples/flax/language-modeling/run_bart_dlm_flax.py
+3
-5
examples/legacy/pytorch-lightning/run_glue.py
examples/legacy/pytorch-lightning/run_glue.py
+1
-1
examples/legacy/pytorch-lightning/run_ner.py
examples/legacy/pytorch-lightning/run_ner.py
+2
-2
examples/legacy/seq2seq/run_eval_search.py
examples/legacy/seq2seq/run_eval_search.py
+2
-2
examples/legacy/token-classification/run_ner.py
examples/legacy/token-classification/run_ner.py
+1
-1
examples/legacy/token-classification/run_tf_ner.py
examples/legacy/token-classification/run_tf_ner.py
+1
-1
examples/pytorch/token-classification/run_ner.py
examples/pytorch/token-classification/run_ner.py
+1
-1
examples/pytorch/token-classification/run_ner_no_trainer.py
examples/pytorch/token-classification/run_ner_no_trainer.py
+1
-1
examples/research_projects/layoutlmv3/run_funsd_cord.py
examples/research_projects/layoutlmv3/run_funsd_cord.py
+2
-2
examples/research_projects/rag-end2end-retriever/finetune_rag.py
...s/research_projects/rag-end2end-retriever/finetune_rag.py
+2
-2
examples/research_projects/rag/finetune_rag.py
examples/research_projects/rag/finetune_rag.py
+1
-1
examples/research_projects/seq2seq-distillation/finetune.py
examples/research_projects/seq2seq-distillation/finetune.py
+2
-2
examples/research_projects/zero-shot-distillation/distill_classifier.py
...rch_projects/zero-shot-distillation/distill_classifier.py
+1
-1
src/transformers/benchmark/benchmark_utils.py
src/transformers/benchmark/benchmark_utils.py
+1
-1
src/transformers/modelcard.py
src/transformers/modelcard.py
+3
-3
src/transformers/models/esm/tokenization_esm.py
src/transformers/models/esm/tokenization_esm.py
+1
-1
src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py
...vert_maskformer_original_pytorch_checkpoint_to_pytorch.py
+1
-1
src/transformers/models/oneformer/convert_to_hf_oneformer.py
src/transformers/models/oneformer/convert_to_hf_oneformer.py
+1
-1
src/transformers/models/speech_encoder_decoder/convert_speech_to_text_wav2vec2_seq2seq_original_to_pytorch.py
...rt_speech_to_text_wav2vec2_seq2seq_original_to_pytorch.py
+1
-1
src/transformers/onnx/convert.py
src/transformers/onnx/convert.py
+2
-4
No files found.
examples/flax/language-modeling/run_bart_dlm_flax.py
View file @
ef28df05
...
@@ -319,15 +319,13 @@ class FlaxDataCollatorForBartDenoisingLM:
...
@@ -319,15 +319,13 @@ class FlaxDataCollatorForBartDenoisingLM:
sentence_ends
=
np
.
argwhere
(
end_sentence_mask
)
sentence_ends
=
np
.
argwhere
(
end_sentence_mask
)
sentence_ends
[:,
1
]
+=
1
sentence_ends
[:,
1
]
+=
1
example_has_multiple_sentences
,
num_sentences
=
np
.
unique
(
sentence_ends
[:,
0
],
return_counts
=
True
)
example_has_multiple_sentences
,
num_sentences
=
np
.
unique
(
sentence_ends
[:,
0
],
return_counts
=
True
)
num_sentences_map
=
{
sent_idx
:
count
for
sent_idx
,
count
in
zip
(
example_has_multiple_sentences
,
num_sentences
)
}
num_sentences_map
=
dict
(
zip
(
example_has_multiple_sentences
,
num_sentences
)
)
num_to_permute
=
np
.
ceil
(
num_sentences
*
self
.
permute_sentence_ratio
).
astype
(
int
)
num_to_permute
=
np
.
ceil
(
num_sentences
*
self
.
permute_sentence_ratio
).
astype
(
int
)
num_to_permute_map
=
{
num_to_permute_map
=
dict
(
zip
(
example_has_multiple_sentences
,
num_to_permute
))
sent_idx
:
count
for
sent_idx
,
count
in
zip
(
example_has_multiple_sentences
,
num_to_permute
)
}
sentence_ends
=
np
.
split
(
sentence_ends
[:,
1
],
np
.
unique
(
sentence_ends
[:,
0
],
return_index
=
True
)[
1
][
1
:])
sentence_ends
=
np
.
split
(
sentence_ends
[:,
1
],
np
.
unique
(
sentence_ends
[:,
0
],
return_index
=
True
)[
1
][
1
:])
sentence_ends_map
=
{
sent_idx
:
count
for
sent_idx
,
count
in
zip
(
example_has_multiple_sentences
,
sentence_ends
)
}
sentence_ends_map
=
dict
(
zip
(
example_has_multiple_sentences
,
sentence_ends
)
)
for
i
in
range
(
input_ids
.
shape
[
0
]):
for
i
in
range
(
input_ids
.
shape
[
0
]):
if
i
not
in
example_has_multiple_sentences
:
if
i
not
in
example_has_multiple_sentences
:
...
...
examples/legacy/pytorch-lightning/run_glue.py
View file @
ef28df05
...
@@ -124,7 +124,7 @@ class GLUETransformer(BaseTransformer):
...
@@ -124,7 +124,7 @@ class GLUETransformer(BaseTransformer):
results
=
{
**
{
"val_loss"
:
val_loss_mean
},
**
compute_metrics
(
self
.
hparams
.
task
,
preds
,
out_label_ids
)}
results
=
{
**
{
"val_loss"
:
val_loss_mean
},
**
compute_metrics
(
self
.
hparams
.
task
,
preds
,
out_label_ids
)}
ret
=
{
k
:
v
for
k
,
v
in
results
.
items
()
}
ret
=
dict
(
results
.
items
()
)
ret
[
"log"
]
=
results
ret
[
"log"
]
=
results
return
ret
,
preds_list
,
out_label_list
return
ret
,
preds_list
,
out_label_list
...
...
examples/legacy/pytorch-lightning/run_ner.py
View file @
ef28df05
...
@@ -122,7 +122,7 @@ class NERTransformer(BaseTransformer):
...
@@ -122,7 +122,7 @@ class NERTransformer(BaseTransformer):
preds
=
np
.
argmax
(
preds
,
axis
=
2
)
preds
=
np
.
argmax
(
preds
,
axis
=
2
)
out_label_ids
=
np
.
concatenate
([
x
[
"target"
]
for
x
in
outputs
],
axis
=
0
)
out_label_ids
=
np
.
concatenate
([
x
[
"target"
]
for
x
in
outputs
],
axis
=
0
)
label_map
=
{
i
:
label
for
i
,
label
in
enumerate
(
self
.
labels
)
}
label_map
=
dict
(
enumerate
(
self
.
labels
)
)
out_label_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
out_label_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
preds_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
preds_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
...
@@ -140,7 +140,7 @@ class NERTransformer(BaseTransformer):
...
@@ -140,7 +140,7 @@ class NERTransformer(BaseTransformer):
"f1"
:
f1_score
(
out_label_list
,
preds_list
),
"f1"
:
f1_score
(
out_label_list
,
preds_list
),
}
}
ret
=
{
k
:
v
for
k
,
v
in
results
.
items
()
}
ret
=
dict
(
results
.
items
()
)
ret
[
"log"
]
=
results
ret
[
"log"
]
=
results
return
ret
,
preds_list
,
out_label_list
return
ret
,
preds_list
,
out_label_list
...
...
examples/legacy/seq2seq/run_eval_search.py
View file @
ef28df05
...
@@ -34,7 +34,7 @@ task_score_names = {
...
@@ -34,7 +34,7 @@ task_score_names = {
def
parse_search_arg
(
search
):
def
parse_search_arg
(
search
):
groups
=
search
.
split
()
groups
=
search
.
split
()
entries
=
{
k
:
vs
for
k
,
vs
in
(
g
.
split
(
"="
)
for
g
in
groups
)
}
entries
=
dict
(
(
g
.
split
(
"="
)
for
g
in
groups
)
)
entry_names
=
list
(
entries
.
keys
())
entry_names
=
list
(
entries
.
keys
())
sets
=
[[
f
"--
{
k
}
{
v
}
"
for
v
in
vs
.
split
(
":"
)]
for
k
,
vs
in
entries
.
items
()]
sets
=
[[
f
"--
{
k
}
{
v
}
"
for
v
in
vs
.
split
(
":"
)]
for
k
,
vs
in
entries
.
items
()]
matrix
=
[
list
(
x
)
for
x
in
itertools
.
product
(
*
sets
)]
matrix
=
[
list
(
x
)
for
x
in
itertools
.
product
(
*
sets
)]
...
@@ -105,7 +105,7 @@ def run_search():
...
@@ -105,7 +105,7 @@ def run_search():
col_widths
=
{
col
:
len
(
str
(
col
))
for
col
in
col_names
}
col_widths
=
{
col
:
len
(
str
(
col
))
for
col
in
col_names
}
results
=
[]
results
=
[]
for
r
in
matrix
:
for
r
in
matrix
:
hparams
=
{
k
:
v
for
k
,
v
in
(
x
.
replace
(
"--"
,
""
).
split
()
for
x
in
r
)
}
hparams
=
dict
(
(
x
.
replace
(
"--"
,
""
).
split
()
for
x
in
r
)
)
args_exp
=
" "
.
join
(
r
).
split
()
args_exp
=
" "
.
join
(
r
).
split
()
args_exp
.
extend
([
"--bs"
,
str
(
args
.
bs
)])
# in case we need to reduce its size due to CUDA OOM
args_exp
.
extend
([
"--bs"
,
str
(
args
.
bs
)])
# in case we need to reduce its size due to CUDA OOM
sys
.
argv
=
args_normal
+
args_exp
sys
.
argv
=
args_normal
+
args_exp
...
...
examples/legacy/token-classification/run_ner.py
View file @
ef28df05
...
@@ -158,7 +158,7 @@ def main():
...
@@ -158,7 +158,7 @@ def main():
# Prepare CONLL-2003 task
# Prepare CONLL-2003 task
labels
=
token_classification_task
.
get_labels
(
data_args
.
labels
)
labels
=
token_classification_task
.
get_labels
(
data_args
.
labels
)
label_map
:
Dict
[
int
,
str
]
=
{
i
:
label
for
i
,
label
in
enumerate
(
labels
)
}
label_map
:
Dict
[
int
,
str
]
=
dict
(
enumerate
(
labels
)
)
num_labels
=
len
(
labels
)
num_labels
=
len
(
labels
)
# Load pretrained model and tokenizer
# Load pretrained model and tokenizer
...
...
examples/legacy/token-classification/run_tf_ner.py
View file @
ef28df05
...
@@ -144,7 +144,7 @@ def main():
...
@@ -144,7 +144,7 @@ def main():
# Prepare Token Classification task
# Prepare Token Classification task
labels
=
token_classification_task
.
get_labels
(
data_args
.
labels
)
labels
=
token_classification_task
.
get_labels
(
data_args
.
labels
)
label_map
:
Dict
[
int
,
str
]
=
{
i
:
label
for
i
,
label
in
enumerate
(
labels
)
}
label_map
:
Dict
[
int
,
str
]
=
dict
(
enumerate
(
labels
)
)
num_labels
=
len
(
labels
)
num_labels
=
len
(
labels
)
# Load pretrained model and tokenizer
# Load pretrained model and tokenizer
...
...
examples/pytorch/token-classification/run_ner.py
View file @
ef28df05
...
@@ -407,7 +407,7 @@ def main():
...
@@ -407,7 +407,7 @@ def main():
# Set the correspondences label/ID inside the model config
# Set the correspondences label/ID inside the model config
model
.
config
.
label2id
=
{
l
:
i
for
i
,
l
in
enumerate
(
label_list
)}
model
.
config
.
label2id
=
{
l
:
i
for
i
,
l
in
enumerate
(
label_list
)}
model
.
config
.
id2label
=
{
i
:
l
for
i
,
l
in
enumerate
(
label_list
)
}
model
.
config
.
id2label
=
dict
(
enumerate
(
label_list
)
)
# Map that sends B-Xxx label to its I-Xxx counterpart
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label
=
[]
b_to_i_label
=
[]
...
...
examples/pytorch/token-classification/run_ner_no_trainer.py
View file @
ef28df05
...
@@ -442,7 +442,7 @@ def main():
...
@@ -442,7 +442,7 @@ def main():
# Set the correspondences label/ID inside the model config
# Set the correspondences label/ID inside the model config
model
.
config
.
label2id
=
{
l
:
i
for
i
,
l
in
enumerate
(
label_list
)}
model
.
config
.
label2id
=
{
l
:
i
for
i
,
l
in
enumerate
(
label_list
)}
model
.
config
.
id2label
=
{
i
:
l
for
i
,
l
in
enumerate
(
label_list
)
}
model
.
config
.
id2label
=
dict
(
enumerate
(
label_list
)
)
# Map that sends B-Xxx label to its I-Xxx counterpart
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label
=
[]
b_to_i_label
=
[]
...
...
examples/research_projects/layoutlmv3/run_funsd_cord.py
View file @
ef28df05
...
@@ -294,11 +294,11 @@ def main():
...
@@ -294,11 +294,11 @@ def main():
if
isinstance
(
features
[
label_column_name
].
feature
,
ClassLabel
):
if
isinstance
(
features
[
label_column_name
].
feature
,
ClassLabel
):
label_list
=
features
[
label_column_name
].
feature
.
names
label_list
=
features
[
label_column_name
].
feature
.
names
# No need to convert the labels since they are already ints.
# No need to convert the labels since they are already ints.
id2label
=
{
k
:
v
for
k
,
v
in
enumerate
(
label_list
)
}
id2label
=
dict
(
enumerate
(
label_list
)
)
label2id
=
{
v
:
k
for
k
,
v
in
enumerate
(
label_list
)}
label2id
=
{
v
:
k
for
k
,
v
in
enumerate
(
label_list
)}
else
:
else
:
label_list
=
get_label_list
(
datasets
[
"train"
][
label_column_name
])
label_list
=
get_label_list
(
datasets
[
"train"
][
label_column_name
])
id2label
=
{
k
:
v
for
k
,
v
in
enumerate
(
label_list
)
}
id2label
=
dict
(
enumerate
(
label_list
)
)
label2id
=
{
v
:
k
for
k
,
v
in
enumerate
(
label_list
)}
label2id
=
{
v
:
k
for
k
,
v
in
enumerate
(
label_list
)}
num_labels
=
len
(
label_list
)
num_labels
=
len
(
label_list
)
...
...
examples/research_projects/rag-end2end-retriever/finetune_rag.py
View file @
ef28df05
...
@@ -360,7 +360,7 @@ class GenerativeQAModule(BaseTransformer):
...
@@ -360,7 +360,7 @@ class GenerativeQAModule(BaseTransformer):
loss_tensors
=
self
.
_step
(
batch
)
loss_tensors
=
self
.
_step
(
batch
)
logs
=
{
name
:
loss
for
name
,
loss
in
zip
(
self
.
loss_names
,
loss_tensors
)
}
logs
=
dict
(
zip
(
self
.
loss_names
,
loss_tensors
)
)
# tokens per batch
# tokens per batch
tgt_pad_token_id
=
(
tgt_pad_token_id
=
(
self
.
tokenizer
.
generator
.
pad_token_id
self
.
tokenizer
.
generator
.
pad_token_id
...
@@ -434,7 +434,7 @@ class GenerativeQAModule(BaseTransformer):
...
@@ -434,7 +434,7 @@ class GenerativeQAModule(BaseTransformer):
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"decoder_input_ids"
])
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"decoder_input_ids"
])
# print(preds,target)
# print(preds,target)
loss_tensors
=
self
.
_step
(
batch
)
loss_tensors
=
self
.
_step
(
batch
)
base_metrics
=
{
name
:
loss
for
name
,
loss
in
zip
(
self
.
loss_names
,
loss_tensors
)
}
base_metrics
=
dict
(
zip
(
self
.
loss_names
,
loss_tensors
)
)
gen_metrics
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
gen_metrics
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
...
...
examples/research_projects/rag/finetune_rag.py
View file @
ef28df05
...
@@ -321,7 +321,7 @@ class GenerativeQAModule(BaseTransformer):
...
@@ -321,7 +321,7 @@ class GenerativeQAModule(BaseTransformer):
preds
:
List
[
str
]
=
self
.
ids_to_clean_text
(
generated_ids
)
preds
:
List
[
str
]
=
self
.
ids_to_clean_text
(
generated_ids
)
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"decoder_input_ids"
])
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"decoder_input_ids"
])
loss_tensors
=
self
.
_step
(
batch
)
loss_tensors
=
self
.
_step
(
batch
)
base_metrics
=
{
name
:
loss
for
name
,
loss
in
zip
(
self
.
loss_names
,
loss_tensors
)
}
base_metrics
=
dict
(
zip
(
self
.
loss_names
,
loss_tensors
)
)
gen_metrics
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
gen_metrics
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
...
...
examples/research_projects/seq2seq-distillation/finetune.py
View file @
ef28df05
...
@@ -170,7 +170,7 @@ class SummarizationModule(BaseTransformer):
...
@@ -170,7 +170,7 @@ class SummarizationModule(BaseTransformer):
def
training_step
(
self
,
batch
,
batch_idx
)
->
Dict
:
def
training_step
(
self
,
batch
,
batch_idx
)
->
Dict
:
loss_tensors
=
self
.
_step
(
batch
)
loss_tensors
=
self
.
_step
(
batch
)
logs
=
{
name
:
loss
for
name
,
loss
in
zip
(
self
.
loss_names
,
loss_tensors
)
}
logs
=
dict
(
zip
(
self
.
loss_names
,
loss_tensors
)
)
# tokens per batch
# tokens per batch
logs
[
"tpb"
]
=
batch
[
"input_ids"
].
ne
(
self
.
pad
).
sum
()
+
batch
[
"labels"
].
ne
(
self
.
pad
).
sum
()
logs
[
"tpb"
]
=
batch
[
"input_ids"
].
ne
(
self
.
pad
).
sum
()
+
batch
[
"labels"
].
ne
(
self
.
pad
).
sum
()
logs
[
"bs"
]
=
batch
[
"input_ids"
].
shape
[
0
]
logs
[
"bs"
]
=
batch
[
"input_ids"
].
shape
[
0
]
...
@@ -225,7 +225,7 @@ class SummarizationModule(BaseTransformer):
...
@@ -225,7 +225,7 @@ class SummarizationModule(BaseTransformer):
preds
:
List
[
str
]
=
self
.
ids_to_clean_text
(
generated_ids
)
preds
:
List
[
str
]
=
self
.
ids_to_clean_text
(
generated_ids
)
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"labels"
])
target
:
List
[
str
]
=
self
.
ids_to_clean_text
(
batch
[
"labels"
])
loss_tensors
=
self
.
_step
(
batch
)
loss_tensors
=
self
.
_step
(
batch
)
base_metrics
=
{
name
:
loss
for
name
,
loss
in
zip
(
self
.
loss_names
,
loss_tensors
)
}
base_metrics
=
dict
(
zip
(
self
.
loss_names
,
loss_tensors
)
)
rouge
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
rouge
:
Dict
=
self
.
calc_generative_metrics
(
preds
,
target
)
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
summ_len
=
np
.
mean
(
lmap
(
len
,
generated_ids
))
base_metrics
.
update
(
gen_time
=
gen_time
,
gen_len
=
summ_len
,
preds
=
preds
,
target
=
target
,
**
rouge
)
base_metrics
.
update
(
gen_time
=
gen_time
,
gen_len
=
summ_len
,
preds
=
preds
,
target
=
target
,
**
rouge
)
...
...
examples/research_projects/zero-shot-distillation/distill_classifier.py
View file @
ef28df05
...
@@ -303,7 +303,7 @@ def main():
...
@@ -303,7 +303,7 @@ def main():
student_args
.
student_name_or_path
,
num_labels
=
len
(
class_names
)
student_args
.
student_name_or_path
,
num_labels
=
len
(
class_names
)
)
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
student_args
.
student_name_or_path
,
use_fast
=
data_args
.
use_fast_tokenizer
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
student_args
.
student_name_or_path
,
use_fast
=
data_args
.
use_fast_tokenizer
)
model
.
config
.
id2label
=
{
i
:
label
for
i
,
label
in
enumerate
(
class_names
)
}
model
.
config
.
id2label
=
dict
(
enumerate
(
class_names
)
)
model
.
config
.
label2id
=
{
label
:
i
for
i
,
label
in
enumerate
(
class_names
)}
model
.
config
.
label2id
=
{
label
:
i
for
i
,
label
in
enumerate
(
class_names
)}
# 4. train student on teacher predictions
# 4. train student on teacher predictions
...
...
src/transformers/benchmark/benchmark_utils.py
View file @
ef28df05
...
@@ -610,7 +610,7 @@ class Benchmark(ABC):
...
@@ -610,7 +610,7 @@ class Benchmark(ABC):
model_name
:
AutoConfig
.
from_pretrained
(
model_name
)
for
model_name
in
self
.
args
.
model_names
model_name
:
AutoConfig
.
from_pretrained
(
model_name
)
for
model_name
in
self
.
args
.
model_names
}
}
else
:
else
:
self
.
config_dict
=
{
model_name
:
config
for
model_name
,
config
in
zip
(
self
.
args
.
model_names
,
configs
)
}
self
.
config_dict
=
dict
(
zip
(
self
.
args
.
model_names
,
configs
)
)
warnings
.
warn
(
warnings
.
warn
(
f
"The class
{
self
.
__class__
}
is deprecated. Hugging Face Benchmarking utils"
f
"The class
{
self
.
__class__
}
is deprecated. Hugging Face Benchmarking utils"
...
...
src/transformers/modelcard.py
View file @
ef28df05
...
@@ -399,9 +399,9 @@ class TrainingSummary:
...
@@ -399,9 +399,9 @@ class TrainingSummary:
dataset_metadata
=
_listify
(
self
.
dataset_metadata
)
dataset_metadata
=
_listify
(
self
.
dataset_metadata
)
if
len
(
dataset_args
)
<
len
(
dataset_tags
):
if
len
(
dataset_args
)
<
len
(
dataset_tags
):
dataset_args
=
dataset_args
+
[
None
]
*
(
len
(
dataset_tags
)
-
len
(
dataset_args
))
dataset_args
=
dataset_args
+
[
None
]
*
(
len
(
dataset_tags
)
-
len
(
dataset_args
))
dataset_mapping
=
{
tag
:
name
for
tag
,
name
in
zip
(
dataset_tags
,
dataset_names
)
}
dataset_mapping
=
dict
(
zip
(
dataset_tags
,
dataset_names
)
)
dataset_arg_mapping
=
{
tag
:
arg
for
tag
,
arg
in
zip
(
dataset_tags
,
dataset_args
)
}
dataset_arg_mapping
=
dict
(
zip
(
dataset_tags
,
dataset_args
)
)
dataset_metadata_mapping
=
{
tag
:
metadata
for
tag
,
metadata
in
zip
(
dataset_tags
,
dataset_metadata
)
}
dataset_metadata_mapping
=
dict
(
zip
(
dataset_tags
,
dataset_metadata
)
)
task_mapping
=
{
task_mapping
=
{
task
:
TASK_TAG_TO_NAME_MAPPING
[
task
]
for
task
in
_listify
(
self
.
tasks
)
if
task
in
TASK_TAG_TO_NAME_MAPPING
task
:
TASK_TAG_TO_NAME_MAPPING
[
task
]
for
task
in
_listify
(
self
.
tasks
)
if
task
in
TASK_TAG_TO_NAME_MAPPING
...
...
src/transformers/models/esm/tokenization_esm.py
View file @
ef28df05
...
@@ -57,7 +57,7 @@ class EsmTokenizer(PreTrainedTokenizer):
...
@@ -57,7 +57,7 @@ class EsmTokenizer(PreTrainedTokenizer):
def
__init__
(
self
,
vocab_file
,
**
kwargs
):
def
__init__
(
self
,
vocab_file
,
**
kwargs
):
super
().
__init__
(
**
kwargs
)
super
().
__init__
(
**
kwargs
)
self
.
all_tokens
=
load_vocab_file
(
vocab_file
)
self
.
all_tokens
=
load_vocab_file
(
vocab_file
)
self
.
_id_to_token
=
{
ind
:
tok
for
ind
,
tok
in
enumerate
(
self
.
all_tokens
)
}
self
.
_id_to_token
=
dict
(
enumerate
(
self
.
all_tokens
)
)
self
.
_token_to_id
=
{
tok
:
ind
for
ind
,
tok
in
enumerate
(
self
.
all_tokens
)}
self
.
_token_to_id
=
{
tok
:
ind
for
ind
,
tok
in
enumerate
(
self
.
all_tokens
)}
self
.
unk_token
=
"<unk>"
self
.
unk_token
=
"<unk>"
self
.
cls_token
=
"<cls>"
self
.
cls_token
=
"<cls>"
...
...
src/transformers/models/maskformer/convert_maskformer_original_pytorch_checkpoint_to_pytorch.py
View file @
ef28df05
...
@@ -111,7 +111,7 @@ class OriginalMaskFormerConfigToOursConverter:
...
@@ -111,7 +111,7 @@ class OriginalMaskFormerConfigToOursConverter:
swin
=
model
.
SWIN
swin
=
model
.
SWIN
dataset_catalog
=
MetadataCatalog
.
get
(
original_config
.
DATASETS
.
TEST
[
0
])
dataset_catalog
=
MetadataCatalog
.
get
(
original_config
.
DATASETS
.
TEST
[
0
])
id2label
=
{
idx
:
label
for
idx
,
label
in
enumerate
(
dataset_catalog
.
stuff_classes
)
}
id2label
=
dict
(
enumerate
(
dataset_catalog
.
stuff_classes
)
)
label2id
=
{
label
:
idx
for
idx
,
label
in
id2label
.
items
()}
label2id
=
{
label
:
idx
for
idx
,
label
in
id2label
.
items
()}
config
:
MaskFormerConfig
=
MaskFormerConfig
(
config
:
MaskFormerConfig
=
MaskFormerConfig
(
...
...
src/transformers/models/oneformer/convert_to_hf_oneformer.py
View file @
ef28df05
...
@@ -122,7 +122,7 @@ class OriginalOneFormerConfigToOursConverter:
...
@@ -122,7 +122,7 @@ class OriginalOneFormerConfigToOursConverter:
model
=
original_config
.
MODEL
model
=
original_config
.
MODEL
dataset_catalog
=
MetadataCatalog
.
get
(
original_config
.
DATASETS
.
TEST_PANOPTIC
[
0
])
dataset_catalog
=
MetadataCatalog
.
get
(
original_config
.
DATASETS
.
TEST_PANOPTIC
[
0
])
id2label
=
{
idx
:
label
for
idx
,
label
in
enumerate
(
dataset_catalog
.
stuff_classes
)
}
id2label
=
dict
(
enumerate
(
dataset_catalog
.
stuff_classes
)
)
label2id
=
{
label
:
idx
for
idx
,
label
in
id2label
.
items
()}
label2id
=
{
label
:
idx
for
idx
,
label
in
id2label
.
items
()}
if
is_swin
:
if
is_swin
:
...
...
src/transformers/models/speech_encoder_decoder/convert_speech_to_text_wav2vec2_seq2seq_original_to_pytorch.py
View file @
ef28df05
...
@@ -207,7 +207,7 @@ def create_vocab_dict(dict_path):
...
@@ -207,7 +207,7 @@ def create_vocab_dict(dict_path):
"<unk>"
:
3
,
"<unk>"
:
3
,
}
}
vocab_dict
.
update
(
{
k
:
v
for
k
,
v
in
zip
(
words
,
range
(
4
,
num_words
+
4
))
}
)
vocab_dict
.
update
(
dict
(
zip
(
words
,
range
(
4
,
num_words
+
4
))
)
)
return
vocab_dict
return
vocab_dict
...
...
src/transformers/onnx/convert.py
View file @
ef28df05
...
@@ -179,9 +179,7 @@ def export_pytorch(
...
@@ -179,9 +179,7 @@ def export_pytorch(
f
=
output
.
as_posix
(),
f
=
output
.
as_posix
(),
input_names
=
list
(
config
.
inputs
.
keys
()),
input_names
=
list
(
config
.
inputs
.
keys
()),
output_names
=
onnx_outputs
,
output_names
=
onnx_outputs
,
dynamic_axes
=
{
dynamic_axes
=
dict
(
chain
(
config
.
inputs
.
items
(),
config
.
outputs
.
items
())),
name
:
axes
for
name
,
axes
in
chain
(
config
.
inputs
.
items
(),
config
.
outputs
.
items
())
},
do_constant_folding
=
True
,
do_constant_folding
=
True
,
use_external_data_format
=
config
.
use_external_data_format
(
model
.
num_parameters
()),
use_external_data_format
=
config
.
use_external_data_format
(
model
.
num_parameters
()),
enable_onnx_checker
=
True
,
enable_onnx_checker
=
True
,
...
@@ -208,7 +206,7 @@ def export_pytorch(
...
@@ -208,7 +206,7 @@ def export_pytorch(
f
=
output
.
as_posix
(),
f
=
output
.
as_posix
(),
input_names
=
list
(
config
.
inputs
.
keys
()),
input_names
=
list
(
config
.
inputs
.
keys
()),
output_names
=
onnx_outputs
,
output_names
=
onnx_outputs
,
dynamic_axes
=
{
name
:
axes
for
name
,
axes
in
chain
(
config
.
inputs
.
items
(),
config
.
outputs
.
items
())
}
,
dynamic_axes
=
dict
(
chain
(
config
.
inputs
.
items
(),
config
.
outputs
.
items
())
)
,
do_constant_folding
=
True
,
do_constant_folding
=
True
,
opset_version
=
opset
,
opset_version
=
opset
,
)
)
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment