Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
ef28df05
"configs/vscode:/vscode.git/clone" did not exist on "c2cf53519e67dcc8da3a88c71c9ce1dc667f405e"
Commit
ef28df05
authored
Mar 22, 2023
by
Sylvain
Browse files
Fix quality due to ruff release
parent
73fdc8c5
Changes
28
Show whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
10 additions
and
24 deletions
+10
-24
src/transformers/pipelines/document_question_answering.py
src/transformers/pipelines/document_question_answering.py
+1
-1
src/transformers/utils/generic.py
src/transformers/utils/generic.py
+1
-1
tests/models/mask2former/test_image_processing_mask2former.py
...s/models/mask2former/test_image_processing_mask2former.py
+1
-3
tests/models/maskformer/test_image_processing_maskformer.py
tests/models/maskformer/test_image_processing_maskformer.py
+1
-3
tests/models/oneformer/test_image_processing_oneformer.py
tests/models/oneformer/test_image_processing_oneformer.py
+1
-3
tests/models/oneformer/test_processor_oneformer.py
tests/models/oneformer/test_processor_oneformer.py
+1
-3
tests/pipelines/test_pipelines_automatic_speech_recognition.py
.../pipelines/test_pipelines_automatic_speech_recognition.py
+2
-5
tests/pipelines/test_pipelines_image_segmentation.py
tests/pipelines/test_pipelines_image_segmentation.py
+2
-5
No files found.
src/transformers/pipelines/document_question_answering.py
View file @
ef28df05
...
...
@@ -418,7 +418,7 @@ class DocumentQuestionAnsweringPipeline(ChunkPipeline):
else
:
model_outputs
=
self
.
model
(
**
model_inputs
)
model_outputs
=
{
k
:
v
for
(
k
,
v
)
in
model_outputs
.
items
()
}
model_outputs
=
dict
(
model_outputs
.
items
()
)
model_outputs
[
"p_mask"
]
=
p_mask
model_outputs
[
"word_ids"
]
=
word_ids
model_outputs
[
"words"
]
=
words
...
...
src/transformers/utils/generic.py
View file @
ef28df05
...
...
@@ -282,7 +282,7 @@ class ModelOutput(OrderedDict):
def
__getitem__
(
self
,
k
):
if
isinstance
(
k
,
str
):
inner_dict
=
{
k
:
v
for
(
k
,
v
)
in
self
.
items
()
}
inner_dict
=
dict
(
self
.
items
()
)
return
inner_dict
[
k
]
else
:
return
self
.
to_tuple
()[
k
]
...
...
tests/models/mask2former/test_image_processing_mask2former.py
View file @
ef28df05
...
...
@@ -298,9 +298,7 @@ class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
high
=
num_labels
if
is_instance_map
:
labels_expanded
=
list
(
range
(
num_labels
))
*
2
instance_id_to_semantic_id
=
{
instance_id
:
label_id
for
instance_id
,
label_id
in
enumerate
(
labels_expanded
)
}
instance_id_to_semantic_id
=
dict
(
enumerate
(
labels_expanded
))
annotations
=
[
np
.
random
.
randint
(
0
,
high
*
2
,
(
img
.
size
[
1
],
img
.
size
[
0
])).
astype
(
np
.
uint8
)
for
img
in
image_inputs
]
...
...
tests/models/maskformer/test_image_processing_maskformer.py
View file @
ef28df05
...
...
@@ -298,9 +298,7 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
high
=
num_labels
if
is_instance_map
:
labels_expanded
=
list
(
range
(
num_labels
))
*
2
instance_id_to_semantic_id
=
{
instance_id
:
label_id
for
instance_id
,
label_id
in
enumerate
(
labels_expanded
)
}
instance_id_to_semantic_id
=
dict
(
enumerate
(
labels_expanded
))
annotations
=
[
np
.
random
.
randint
(
0
,
high
*
2
,
(
img
.
size
[
1
],
img
.
size
[
0
])).
astype
(
np
.
uint8
)
for
img
in
image_inputs
]
...
...
tests/models/oneformer/test_image_processing_oneformer.py
View file @
ef28df05
...
...
@@ -329,9 +329,7 @@ class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
high
=
num_labels
if
is_instance_map
:
labels_expanded
=
list
(
range
(
num_labels
))
*
2
instance_id_to_semantic_id
=
{
instance_id
:
label_id
for
instance_id
,
label_id
in
enumerate
(
labels_expanded
)
}
instance_id_to_semantic_id
=
dict
(
enumerate
(
labels_expanded
))
annotations
=
[
np
.
random
.
randint
(
0
,
high
*
2
,
(
img
.
size
[
1
],
img
.
size
[
0
])).
astype
(
np
.
uint8
)
for
img
in
image_inputs
]
...
...
tests/models/oneformer/test_processor_oneformer.py
View file @
ef28df05
...
...
@@ -401,9 +401,7 @@ class OneFormerProcessingTest(unittest.TestCase):
high
=
num_labels
if
is_instance_map
:
labels_expanded
=
list
(
range
(
num_labels
))
*
2
instance_id_to_semantic_id
=
{
instance_id
:
label_id
for
instance_id
,
label_id
in
enumerate
(
labels_expanded
)
}
instance_id_to_semantic_id
=
dict
(
enumerate
(
labels_expanded
))
annotations
=
[
np
.
random
.
randint
(
0
,
high
*
2
,
(
img
.
size
[
1
],
img
.
size
[
0
])).
astype
(
np
.
uint8
)
for
img
in
image_inputs
]
...
...
tests/pipelines/test_pipelines_automatic_speech_recognition.py
View file @
ef28df05
...
...
@@ -56,11 +56,8 @@ if is_torch_available():
@
is_pipeline_test
class
AutomaticSpeechRecognitionPipelineTests
(
unittest
.
TestCase
):
model_mapping
=
{
k
:
v
for
k
,
v
in
(
list
(
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
.
items
())
if
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
else
[])
+
(
MODEL_FOR_CTC_MAPPING
.
items
()
if
MODEL_FOR_CTC_MAPPING
else
[])
}
model_mapping
=
dict
((
list
(
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
.
items
())
if
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
else
[])
+
(
MODEL_FOR_CTC_MAPPING
.
items
()
if
MODEL_FOR_CTC_MAPPING
else
[]))
def
get_test_pipeline
(
self
,
model
,
tokenizer
,
processor
):
if
tokenizer
is
None
:
...
...
tests/pipelines/test_pipelines_image_segmentation.py
View file @
ef28df05
...
...
@@ -80,14 +80,11 @@ def mask_to_test_readable_only_shape(mask: Image) -> Dict:
@
require_timm
@
require_torch
class
ImageSegmentationPipelineTests
(
unittest
.
TestCase
):
model_mapping
=
{
k
:
v
for
k
,
v
in
(
model_mapping
=
dict
((
list
(
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
.
items
())
if
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
else
[]
)
+
(
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
.
items
()
if
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
else
[])
+
(
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
.
items
()
if
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
else
[])
}
+
(
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
.
items
()
if
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
else
[]))
def
get_test_pipeline
(
self
,
model
,
tokenizer
,
processor
):
image_segmenter
=
ImageSegmentationPipeline
(
model
=
model
,
image_processor
=
processor
)
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment