Commit ef28df05 authored by Sylvain's avatar Sylvain
Browse files

Fix quality due to ruff release

parent 73fdc8c5
......@@ -418,7 +418,7 @@ class DocumentQuestionAnsweringPipeline(ChunkPipeline):
else:
model_outputs = self.model(**model_inputs)
model_outputs = {k: v for (k, v) in model_outputs.items()}
model_outputs = dict(model_outputs.items())
model_outputs["p_mask"] = p_mask
model_outputs["word_ids"] = word_ids
model_outputs["words"] = words
......
......@@ -282,7 +282,7 @@ class ModelOutput(OrderedDict):
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
......
......@@ -298,9 +298,7 @@ class Mask2FormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Te
high = num_labels
if is_instance_map:
labels_expanded = list(range(num_labels)) * 2
instance_id_to_semantic_id = {
instance_id: label_id for instance_id, label_id in enumerate(labels_expanded)
}
instance_id_to_semantic_id = dict(enumerate(labels_expanded))
annotations = [
np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs
]
......
......@@ -298,9 +298,7 @@ class MaskFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Tes
high = num_labels
if is_instance_map:
labels_expanded = list(range(num_labels)) * 2
instance_id_to_semantic_id = {
instance_id: label_id for instance_id, label_id in enumerate(labels_expanded)
}
instance_id_to_semantic_id = dict(enumerate(labels_expanded))
annotations = [
np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs
]
......
......@@ -329,9 +329,7 @@ class OneFormerImageProcessingTest(ImageProcessingSavingTestMixin, unittest.Test
high = num_labels
if is_instance_map:
labels_expanded = list(range(num_labels)) * 2
instance_id_to_semantic_id = {
instance_id: label_id for instance_id, label_id in enumerate(labels_expanded)
}
instance_id_to_semantic_id = dict(enumerate(labels_expanded))
annotations = [
np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs
]
......
......@@ -401,9 +401,7 @@ class OneFormerProcessingTest(unittest.TestCase):
high = num_labels
if is_instance_map:
labels_expanded = list(range(num_labels)) * 2
instance_id_to_semantic_id = {
instance_id: label_id for instance_id, label_id in enumerate(labels_expanded)
}
instance_id_to_semantic_id = dict(enumerate(labels_expanded))
annotations = [
np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs
]
......
......@@ -56,11 +56,8 @@ if is_torch_available():
@is_pipeline_test
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
model_mapping = {
k: v
for k, v in (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
}
model_mapping = dict((list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else []))
def get_test_pipeline(self, model, tokenizer, processor):
if tokenizer is None:
......
......@@ -80,14 +80,11 @@ def mask_to_test_readable_only_shape(mask: Image) -> Dict:
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase):
model_mapping = {
k: v
for k, v in (
model_mapping = dict((
list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
)
+ (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
+ (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
}
+ (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else []))
def get_test_pipeline(self, model, tokenizer, processor):
image_segmenter = ImageSegmentationPipeline(model=model, image_processor=processor)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment