Unverified Commit ed1845ef authored by lewtun's avatar lewtun Committed by GitHub
Browse files

Clarify use of TrainingArguments.disable_tqdm in Jupyter Notebooks (#9076)



* Clarify impact of disable_tqdm on Jupyter Notebooks

* Add weblink to argparse

* Replace "dev set" with more common "validation set" in do_eval

* Tweak prediction_loss_only

* Tweak description of Adam hyperparameters

* Add weblink to TensorBoard

* Capitalise apex

* Tweak local_rank description

* Add weblink for wandb

* Replace nlp with datasets

* Tweak grammar in model_parallel

* Capitalise apex

* Update TensorFlow training args to match PyTorch ones

* Fix style

* Fix underscore in weblink
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix underscore in weblink
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix underscore in weblink
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix underscore in weblink
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add obj to datasets.Dataset
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 44c340f4
......@@ -51,8 +51,9 @@ class TrainingArguments:
TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
itself**.
Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify
them on the command line.
Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse
<https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command
line.
......@@ -68,10 +69,11 @@ class TrainingArguments:
intended to be used by your training/evaluation scripts instead. See the `example scripts
<https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
do_eval (:obj:`bool`, `optional`):
Whether to run evaluation on the dev set or not. Will be set to :obj:`True` if :obj:`evaluation_strategy`
is different from :obj:`"no"`. This argument is not directly used by :class:`~transformers.Trainer`, it's
intended to be used by your training/evaluation scripts instead. See the `example scripts
<https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if
:obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run predictions on the test set or not. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
......@@ -85,7 +87,7 @@ class TrainingArguments:
* :obj:`"epoch"`: Evaluation is done at the end of each epoch.
prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`):
When performing evaluation and predictions, only returns the loss.
When performing evaluation and generating predictions, only returns the loss.
per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
The batch size per GPU/TPU core/CPU for training.
per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8):
......@@ -107,11 +109,11 @@ class TrainingArguments:
weight_decay (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply (if not zero).
adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
The beta1 for the Adam optimizer.
The beta1 hyperparameter for the Adam optimizer.
adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
The beta2 for the Adam optimizer.
The beta2 hyperparameter for the Adam optimizer.
adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
Epsilon for the Adam optimizer.
The epsilon hyperparameter for the Adam optimizer.
max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
Maximum gradient norm (for gradient clipping).
num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
......@@ -123,7 +125,8 @@ class TrainingArguments:
warmup_steps (:obj:`int`, `optional`, defaults to 0):
Number of steps used for a linear warmup from 0 to :obj:`learning_rate`.
logging_dir (:obj:`str`, `optional`):
Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`.
`TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to
`runs/**CURRENT_DATETIME_HOSTNAME**`.
logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to log and evaluate the first :obj:`global_step` or not.
logging_steps (:obj:`int`, `optional`, defaults to 500):
......@@ -138,12 +141,12 @@ class TrainingArguments:
seed (:obj:`int`, `optional`, defaults to 42):
Random seed for initialization.
fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training.
Whether to use 16-bit (mixed) precision training (through NVIDIA Apex) instead of 32-bit training.
fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'):
For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
on the `apex documentation <https://nvidia.github.io/apex/amp.html>`__.
For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__.
local_rank (:obj:`int`, `optional`, defaults to -1):
During distributed training, the rank of the process.
Rank of the process during distributed training.
tpu_num_cores (:obj:`int`, `optional`):
When training on TPU, the number of TPU cores (automatically passed by launcher script).
debug (:obj:`bool`, `optional`, defaults to :obj:`False`):
......@@ -163,13 +166,14 @@ class TrainingArguments:
``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model
at the next training step under the keyword argument ``mems``.
run_name (:obj:`str`, `optional`):
A descriptor for the run. Notably used for wandb logging.
A descriptor for the run. Typically used for `wandb <https://www.wandb.com/>`_ logging.
disable_tqdm (:obj:`bool`, `optional`):
Whether or not to disable the tqdm progress bars. Will default to :obj:`True` if the logging level is set
to warn or lower (default), :obj:`False` otherwise.
Whether or not to disable the tqdm progress bars and table of metrics produced by
:class:`~transformers.notebook.NotebookTrainingTracker` in Jupyter Notebooks. Will default to :obj:`True`
if the logging level is set to warn or lower (default), :obj:`False` otherwise.
remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`):
If using `nlp.Dataset` datasets, whether or not to automatically remove the columns unused by the model
forward method.
If using :obj:`datasets.Dataset` datasets, whether or not to automatically remove the columns unused by the
model forward method.
(Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.)
label_names (:obj:`List[str]`, `optional`):
......@@ -201,9 +205,9 @@ class TrainingArguments:
:obj:`"eval_loss"`.
- :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`.
model_parallel (:obj:`bool`, `optional`, defaults to :obj:`False`):
If there are more than one devices, whether to use model parallelism to distribute the model's modules
across devices or not.
ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`):
If there is more than one device, whether to use model parallelism to distribute the model's modules across
devices or not.
ignore_skip_data (:obj:`bool`, `optional`, defaults to :obj:`False`):
When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping
step can take a long time) but will not yield the same results as the interrupted training would have.
......@@ -306,7 +310,7 @@ class TrainingArguments:
fp16: bool = field(
default=False,
metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"},
metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA Apex) instead of 32-bit"},
)
fp16_opt_level: str = field(
default="O1",
......
......@@ -33,8 +33,9 @@ class TFTrainingArguments(TrainingArguments):
TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
itself**.
Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify
them on the command line.
Using :class:`~transformers.HfArgumentParser` we can turn this class into `argparse
<https://docs.python.org/3/library/argparse.html#module-argparse>`__ arguments that can be specified on the command
line.
Parameters:
output_dir (:obj:`str`):
......@@ -43,16 +44,26 @@ class TFTrainingArguments(TrainingArguments):
If :obj:`True`, overwrite the content of the output directory. Use this to continue training if
:obj:`output_dir` points to a checkpoint directory.
do_train (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run training or not.
do_eval (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run evaluation on the dev set or not.
Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's
intended to be used by your training/evaluation scripts instead. See the `example scripts
<https://github.com/huggingface/transformers/tree/master/examples>`__ for more details.
do_eval (:obj:`bool`, `optional`):
Whether to run evaluation on the validation set or not. Will be set to :obj:`True` if
:obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to run predictions on the test set or not.
Whether to run predictions on the test set or not. This argument is not directly used by
:class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See
the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more
details.
evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.EvaluationStrategy`, `optional`, defaults to :obj:`"no"`):
The evaluation strategy to adopt during training. Possible values are:
* :obj:`"no"`: No evaluation is done during training.
* :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
* :obj:`"epoch"`: Evaluation is done at the end of each epoch.
per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8):
The batch size per GPU/TPU core/CPU for training.
......@@ -70,8 +81,12 @@ class TFTrainingArguments(TrainingArguments):
The initial learning rate for Adam.
weight_decay (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply (if not zero).
adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
The beta1 hyperparameter for the Adam optimizer.
adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
The beta2 hyperparameter for the Adam optimizer.
adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
Epsilon for the Adam optimizer.
The epsilon hyperparameter for the Adam optimizer.
max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
Maximum gradient norm (for gradient clipping).
num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
......@@ -82,7 +97,8 @@ class TFTrainingArguments(TrainingArguments):
warmup_steps (:obj:`int`, `optional`, defaults to 0):
Number of steps used for a linear warmup from 0 to :obj:`learning_rate`.
logging_dir (:obj:`str`, `optional`):
Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`.
`TensorBoard <https://www.tensorflow.org/tensorboard>`__ log directory. Will default to
`runs/**CURRENT_DATETIME_HOSTNAME**`.
logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to log and evaluate the first :obj:`global_step` or not.
logging_steps (:obj:`int`, `optional`, defaults to 500):
......@@ -97,10 +113,10 @@ class TFTrainingArguments(TrainingArguments):
seed (:obj:`int`, `optional`, defaults to 42):
Random seed for initialization.
fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training.
Whether to use 16-bit (mixed) precision training (through NVIDIA Apex) instead of 32-bit training.
fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'):
For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
on the `apex documentation <https://nvidia.github.io/apex/amp.html>`__.
For :obj:`fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details
on the `Apex documentation <https://nvidia.github.io/apex/amp.html>`__.
local_rank (:obj:`int`, `optional`, defaults to -1):
During distributed training, the rank of the process.
tpu_num_cores (:obj:`int`, `optional`):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment