Unverified Commit eb849f66 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Migrate doc files to Markdown. (#24376)



* Rename index.mdx to index.md

* With saved modifs

* Address review comment

* Treat all files

* .mdx -> .md

* Remove special char

* Update utils/tests_fetcher.py
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>

---------
Co-authored-by: default avatarLysandre Debut <lysandre.debut@reseau.eseo.fr>
parent b0513b01
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Data2Vec
## Overview
The Data2Vec model was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli.
Data2Vec proposes a unified framework for self-supervised learning across different data modalities - text, audio and images.
Importantly, predicted targets for pre-training are contextualized latent representations of the inputs, rather than modality-specific, context-independent targets.
The abstract from the paper is the following:
*While the general idea of self-supervised learning is identical across modalities, the actual algorithms and
objectives differ widely because they were developed with a single modality in mind. To get us closer to general
self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech,
NLP or computer vision. The core idea is to predict latent representations of the full input data based on a
masked view of the input in a selfdistillation setup using a standard Transformer architecture.
Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which
are local in nature, data2vec predicts contextualized latent representations that contain information from
the entire input. Experiments on the major benchmarks of speech recognition, image classification, and
natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.
Models and code are available at www.github.com/pytorch/fairseq/tree/master/examples/data2vec.*
Tips:
- Data2VecAudio, Data2VecText, and Data2VecVision have all been trained using the same self-supervised learning method.
- For Data2VecAudio, preprocessing is identical to [`Wav2Vec2Model`], including feature extraction
- For Data2VecText, preprocessing is identical to [`RobertaModel`], including tokenization.
- For Data2VecVision, preprocessing is identical to [`BeitModel`], including feature extraction.
This model was contributed by [edugp](https://huggingface.co/edugp) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
[sayakpaul](https://github.com/sayakpaul) and [Rocketknight1](https://github.com/Rocketknight1) contributed Data2Vec for vision in TensorFlow.
The original code (for NLP and Speech) can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/data2vec).
The original code for vision can be found [here](https://github.com/facebookresearch/data2vec_vision/tree/main/beit).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Data2Vec.
<PipelineTag pipeline="image-classification"/>
- [`Data2VecVisionForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- To fine-tune [`TFData2VecVisionForImageClassification`] on a custom dataset, see [this notebook](https://colab.research.google.com/github/sayakpaul/TF-2.0-Hacks/blob/master/data2vec_vision_image_classification.ipynb).
**Data2VecText documentation resources**
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
**Data2VecAudio documentation resources**
- [Audio classification task guide](../tasks/audio_classification)
- [Automatic speech recognition task guide](../tasks/asr)
**Data2VecVision documentation resources**
- [Image classification](../tasks/image_classification)
- [Semantic segmentation](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## Data2VecTextConfig
[[autodoc]] Data2VecTextConfig
## Data2VecAudioConfig
[[autodoc]] Data2VecAudioConfig
## Data2VecVisionConfig
[[autodoc]] Data2VecVisionConfig
## Data2VecAudioModel
[[autodoc]] Data2VecAudioModel
- forward
## Data2VecAudioForAudioFrameClassification
[[autodoc]] Data2VecAudioForAudioFrameClassification
- forward
## Data2VecAudioForCTC
[[autodoc]] Data2VecAudioForCTC
- forward
## Data2VecAudioForSequenceClassification
[[autodoc]] Data2VecAudioForSequenceClassification
- forward
## Data2VecAudioForXVector
[[autodoc]] Data2VecAudioForXVector
- forward
## Data2VecTextModel
[[autodoc]] Data2VecTextModel
- forward
## Data2VecTextForCausalLM
[[autodoc]] Data2VecTextForCausalLM
- forward
## Data2VecTextForMaskedLM
[[autodoc]] Data2VecTextForMaskedLM
- forward
## Data2VecTextForSequenceClassification
[[autodoc]] Data2VecTextForSequenceClassification
- forward
## Data2VecTextForMultipleChoice
[[autodoc]] Data2VecTextForMultipleChoice
- forward
## Data2VecTextForTokenClassification
[[autodoc]] Data2VecTextForTokenClassification
- forward
## Data2VecTextForQuestionAnswering
[[autodoc]] Data2VecTextForQuestionAnswering
- forward
## Data2VecVisionModel
[[autodoc]] Data2VecVisionModel
- forward
## Data2VecVisionForImageClassification
[[autodoc]] Data2VecVisionForImageClassification
- forward
## Data2VecVisionForSemanticSegmentation
[[autodoc]] Data2VecVisionForSemanticSegmentation
- forward
## TFData2VecVisionModel
[[autodoc]] TFData2VecVisionModel
- call
## TFData2VecVisionForImageClassification
[[autodoc]] TFData2VecVisionForImageClassification
- call
## TFData2VecVisionForSemanticSegmentation
[[autodoc]] TFData2VecVisionForSemanticSegmentation
- call
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Data2Vec
## Overview
The Data2Vec model was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli.
Data2Vec proposes a unified framework for self-supervised learning across different data modalities - text, audio and images.
Importantly, predicted targets for pre-training are contextualized latent representations of the inputs, rather than modality-specific, context-independent targets.
The abstract from the paper is the following:
*While the general idea of self-supervised learning is identical across modalities, the actual algorithms and
objectives differ widely because they were developed with a single modality in mind. To get us closer to general
self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech,
NLP or computer vision. The core idea is to predict latent representations of the full input data based on a
masked view of the input in a selfdistillation setup using a standard Transformer architecture.
Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which
are local in nature, data2vec predicts contextualized latent representations that contain information from
the entire input. Experiments on the major benchmarks of speech recognition, image classification, and
natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.
Models and code are available at www.github.com/pytorch/fairseq/tree/master/examples/data2vec.*
Tips:
- Data2VecAudio, Data2VecText, and Data2VecVision have all been trained using the same self-supervised learning method.
- For Data2VecAudio, preprocessing is identical to [`Wav2Vec2Model`], including feature extraction
- For Data2VecText, preprocessing is identical to [`RobertaModel`], including tokenization.
- For Data2VecVision, preprocessing is identical to [`BeitModel`], including feature extraction.
This model was contributed by [edugp](https://huggingface.co/edugp) and [patrickvonplaten](https://huggingface.co/patrickvonplaten).
[sayakpaul](https://github.com/sayakpaul) and [Rocketknight1](https://github.com/Rocketknight1) contributed Data2Vec for vision in TensorFlow.
The original code (for NLP and Speech) can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/data2vec).
The original code for vision can be found [here](https://github.com/facebookresearch/data2vec_vision/tree/main/beit).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Data2Vec.
<PipelineTag pipeline="image-classification"/>
- [`Data2VecVisionForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- To fine-tune [`TFData2VecVisionForImageClassification`] on a custom dataset, see [this notebook](https://colab.research.google.com/github/sayakpaul/TF-2.0-Hacks/blob/master/data2vec_vision_image_classification.ipynb).
**Data2VecText documentation resources**
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
**Data2VecAudio documentation resources**
- [Audio classification task guide](../tasks/audio_classification)
- [Automatic speech recognition task guide](../tasks/asr)
**Data2VecVision documentation resources**
- [Image classification](../tasks/image_classification)
- [Semantic segmentation](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## Data2VecTextConfig
[[autodoc]] Data2VecTextConfig
## Data2VecAudioConfig
[[autodoc]] Data2VecAudioConfig
## Data2VecVisionConfig
[[autodoc]] Data2VecVisionConfig
## Data2VecAudioModel
[[autodoc]] Data2VecAudioModel
- forward
## Data2VecAudioForAudioFrameClassification
[[autodoc]] Data2VecAudioForAudioFrameClassification
- forward
## Data2VecAudioForCTC
[[autodoc]] Data2VecAudioForCTC
- forward
## Data2VecAudioForSequenceClassification
[[autodoc]] Data2VecAudioForSequenceClassification
- forward
## Data2VecAudioForXVector
[[autodoc]] Data2VecAudioForXVector
- forward
## Data2VecTextModel
[[autodoc]] Data2VecTextModel
- forward
## Data2VecTextForCausalLM
[[autodoc]] Data2VecTextForCausalLM
- forward
## Data2VecTextForMaskedLM
[[autodoc]] Data2VecTextForMaskedLM
- forward
## Data2VecTextForSequenceClassification
[[autodoc]] Data2VecTextForSequenceClassification
- forward
## Data2VecTextForMultipleChoice
[[autodoc]] Data2VecTextForMultipleChoice
- forward
## Data2VecTextForTokenClassification
[[autodoc]] Data2VecTextForTokenClassification
- forward
## Data2VecTextForQuestionAnswering
[[autodoc]] Data2VecTextForQuestionAnswering
- forward
## Data2VecVisionModel
[[autodoc]] Data2VecVisionModel
- forward
## Data2VecVisionForImageClassification
[[autodoc]] Data2VecVisionForImageClassification
- forward
## Data2VecVisionForSemanticSegmentation
[[autodoc]] Data2VecVisionForSemanticSegmentation
- forward
## TFData2VecVisionModel
[[autodoc]] TFData2VecVisionModel
- call
## TFData2VecVisionForImageClassification
[[autodoc]] TFData2VecVisionForImageClassification
- call
## TFData2VecVisionForSemanticSegmentation
[[autodoc]] TFData2VecVisionForSemanticSegmentation
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeBERTa-v2
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
The abstract from the paper is the following:
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
The following information is visible directly on the [original implementation
repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes
the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can
find more details about this submission in the authors'
[blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/)
New in v2:
- **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
Instead of a GPT2-based tokenizer, the tokenizer is now
[sentencepiece-based](https://github.com/google/sentencepiece) tokenizer.
- **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first
transformer layer to better learn the local dependency of input tokens.
- **Sharing position projection matrix with content projection matrix in attention layer** Based on previous
experiments, this can save parameters without affecting the performance.
- **Apply bucket to encode relative positions** The DeBERTa-v2 model uses log bucket to encode relative positions
similar to T5.
- **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the
performance of downstream tasks.
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/DeBERTa).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## DebertaV2Config
[[autodoc]] DebertaV2Config
## DebertaV2Tokenizer
[[autodoc]] DebertaV2Tokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaV2TokenizerFast
[[autodoc]] DebertaV2TokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
## DebertaV2Model
[[autodoc]] DebertaV2Model
- forward
## DebertaV2PreTrainedModel
[[autodoc]] DebertaV2PreTrainedModel
- forward
## DebertaV2ForMaskedLM
[[autodoc]] DebertaV2ForMaskedLM
- forward
## DebertaV2ForSequenceClassification
[[autodoc]] DebertaV2ForSequenceClassification
- forward
## DebertaV2ForTokenClassification
[[autodoc]] DebertaV2ForTokenClassification
- forward
## DebertaV2ForQuestionAnswering
[[autodoc]] DebertaV2ForQuestionAnswering
- forward
## DebertaV2ForMultipleChoice
[[autodoc]] DebertaV2ForMultipleChoice
- forward
## TFDebertaV2Model
[[autodoc]] TFDebertaV2Model
- call
## TFDebertaV2PreTrainedModel
[[autodoc]] TFDebertaV2PreTrainedModel
- call
## TFDebertaV2ForMaskedLM
[[autodoc]] TFDebertaV2ForMaskedLM
- call
## TFDebertaV2ForSequenceClassification
[[autodoc]] TFDebertaV2ForSequenceClassification
- call
## TFDebertaV2ForTokenClassification
[[autodoc]] TFDebertaV2ForTokenClassification
- call
## TFDebertaV2ForQuestionAnswering
[[autodoc]] TFDebertaV2ForQuestionAnswering
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeBERTa-v2
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
The abstract from the paper is the following:
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
The following information is visible directly on the [original implementation
repository](https://github.com/microsoft/DeBERTa). DeBERTa v2 is the second version of the DeBERTa model. It includes
the 1.5B model used for the SuperGLUE single-model submission and achieving 89.9, versus human baseline 89.8. You can
find more details about this submission in the authors'
[blog](https://www.microsoft.com/en-us/research/blog/microsoft-deberta-surpasses-human-performance-on-the-superglue-benchmark/)
New in v2:
- **Vocabulary** In v2 the tokenizer is changed to use a new vocabulary of size 128K built from the training data.
Instead of a GPT2-based tokenizer, the tokenizer is now
[sentencepiece-based](https://github.com/google/sentencepiece) tokenizer.
- **nGiE(nGram Induced Input Encoding)** The DeBERTa-v2 model uses an additional convolution layer aside with the first
transformer layer to better learn the local dependency of input tokens.
- **Sharing position projection matrix with content projection matrix in attention layer** Based on previous
experiments, this can save parameters without affecting the performance.
- **Apply bucket to encode relative positions** The DeBERTa-v2 model uses log bucket to encode relative positions
similar to T5.
- **900M model & 1.5B model** Two additional model sizes are available: 900M and 1.5B, which significantly improves the
performance of downstream tasks.
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/DeBERTa).
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## DebertaV2Config
[[autodoc]] DebertaV2Config
## DebertaV2Tokenizer
[[autodoc]] DebertaV2Tokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaV2TokenizerFast
[[autodoc]] DebertaV2TokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
## DebertaV2Model
[[autodoc]] DebertaV2Model
- forward
## DebertaV2PreTrainedModel
[[autodoc]] DebertaV2PreTrainedModel
- forward
## DebertaV2ForMaskedLM
[[autodoc]] DebertaV2ForMaskedLM
- forward
## DebertaV2ForSequenceClassification
[[autodoc]] DebertaV2ForSequenceClassification
- forward
## DebertaV2ForTokenClassification
[[autodoc]] DebertaV2ForTokenClassification
- forward
## DebertaV2ForQuestionAnswering
[[autodoc]] DebertaV2ForQuestionAnswering
- forward
## DebertaV2ForMultipleChoice
[[autodoc]] DebertaV2ForMultipleChoice
- forward
## TFDebertaV2Model
[[autodoc]] TFDebertaV2Model
- call
## TFDebertaV2PreTrainedModel
[[autodoc]] TFDebertaV2PreTrainedModel
- call
## TFDebertaV2ForMaskedLM
[[autodoc]] TFDebertaV2ForMaskedLM
- call
## TFDebertaV2ForSequenceClassification
[[autodoc]] TFDebertaV2ForSequenceClassification
- call
## TFDebertaV2ForTokenClassification
[[autodoc]] TFDebertaV2ForTokenClassification
- call
## TFDebertaV2ForQuestionAnswering
[[autodoc]] TFDebertaV2ForQuestionAnswering
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeBERTa
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
The abstract from the paper is the following:
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
contributed by [kamalkraj](https://huggingface.co/kamalkraj) . The original code can be found [here](https://github.com/microsoft/DeBERTa).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DeBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A blog post on how to [Accelerate Large Model Training using DeepSpeed](https://huggingface.co/blog/accelerate-deepspeed) with DeBERTa.
- A blog post on [Supercharged Customer Service with Machine Learning](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) with DeBERTa.
- [`DebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFDebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification" />
- [`DebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFDebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Byte-Pair Encoding tokenization](https://huggingface.co/course/chapter6/5?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`DebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFDebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`DebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFDebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
## DebertaConfig
[[autodoc]] DebertaConfig
## DebertaTokenizer
[[autodoc]] DebertaTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaTokenizerFast
[[autodoc]] DebertaTokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
## DebertaModel
[[autodoc]] DebertaModel
- forward
## DebertaPreTrainedModel
[[autodoc]] DebertaPreTrainedModel
## DebertaForMaskedLM
[[autodoc]] DebertaForMaskedLM
- forward
## DebertaForSequenceClassification
[[autodoc]] DebertaForSequenceClassification
- forward
## DebertaForTokenClassification
[[autodoc]] DebertaForTokenClassification
- forward
## DebertaForQuestionAnswering
[[autodoc]] DebertaForQuestionAnswering
- forward
## TFDebertaModel
[[autodoc]] TFDebertaModel
- call
## TFDebertaPreTrainedModel
[[autodoc]] TFDebertaPreTrainedModel
- call
## TFDebertaForMaskedLM
[[autodoc]] TFDebertaForMaskedLM
- call
## TFDebertaForSequenceClassification
[[autodoc]] TFDebertaForSequenceClassification
- call
## TFDebertaForTokenClassification
[[autodoc]] TFDebertaForTokenClassification
- call
## TFDebertaForQuestionAnswering
[[autodoc]] TFDebertaForQuestionAnswering
- call
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeBERTa
## Overview
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen It is based on Google's
BERT model released in 2018 and Facebook's RoBERTa model released in 2019.
It builds on RoBERTa with disentangled attention and enhanced mask decoder training with half of the data used in
RoBERTa.
The abstract from the paper is the following:
*Recent progress in pre-trained neural language models has significantly improved the performance of many natural
language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with
disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the
disentangled attention mechanism, where each word is represented using two vectors that encode its content and
position, respectively, and the attention weights among words are computed using disentangled matrices on their
contents and relative positions. Second, an enhanced mask decoder is used to replace the output softmax layer to
predict the masked tokens for model pretraining. We show that these two techniques significantly improve the efficiency
of model pretraining and performance of downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of
the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9%
(90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). The DeBERTa code and
pre-trained models will be made publicly available at https://github.com/microsoft/DeBERTa.*
This model was contributed by [DeBERTa](https://huggingface.co/DeBERTa). This model TF 2.0 implementation was
contributed by [kamalkraj](https://huggingface.co/kamalkraj) . The original code can be found [here](https://github.com/microsoft/DeBERTa).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DeBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A blog post on how to [Accelerate Large Model Training using DeepSpeed](https://huggingface.co/blog/accelerate-deepspeed) with DeBERTa.
- A blog post on [Supercharged Customer Service with Machine Learning](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) with DeBERTa.
- [`DebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFDebertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification" />
- [`DebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFDebertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Byte-Pair Encoding tokenization](https://huggingface.co/course/chapter6/5?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`DebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFDebertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`DebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFDebertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
## DebertaConfig
[[autodoc]] DebertaConfig
## DebertaTokenizer
[[autodoc]] DebertaTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaTokenizerFast
[[autodoc]] DebertaTokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
## DebertaModel
[[autodoc]] DebertaModel
- forward
## DebertaPreTrainedModel
[[autodoc]] DebertaPreTrainedModel
## DebertaForMaskedLM
[[autodoc]] DebertaForMaskedLM
- forward
## DebertaForSequenceClassification
[[autodoc]] DebertaForSequenceClassification
- forward
## DebertaForTokenClassification
[[autodoc]] DebertaForTokenClassification
- forward
## DebertaForQuestionAnswering
[[autodoc]] DebertaForQuestionAnswering
- forward
## TFDebertaModel
[[autodoc]] TFDebertaModel
- call
## TFDebertaPreTrainedModel
[[autodoc]] TFDebertaPreTrainedModel
- call
## TFDebertaForMaskedLM
[[autodoc]] TFDebertaForMaskedLM
- call
## TFDebertaForSequenceClassification
[[autodoc]] TFDebertaForSequenceClassification
- call
## TFDebertaForTokenClassification
[[autodoc]] TFDebertaForTokenClassification
- call
## TFDebertaForQuestionAnswering
[[autodoc]] TFDebertaForQuestionAnswering
- call
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Decision Transformer
## Overview
The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
The abstract from the paper is the following:
*We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem.
This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances
in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that
casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or
compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked
Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our
Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity,
Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on
Atari, OpenAI Gym, and Key-to-Door tasks.*
Tips:
This version of the model is for tasks where the state is a vector, image-based states will come soon.
This model was contributed by [edbeeching](https://huggingface.co/edbeeching). The original code can be found [here](https://github.com/kzl/decision-transformer).
## DecisionTransformerConfig
[[autodoc]] DecisionTransformerConfig
## DecisionTransformerGPT2Model
[[autodoc]] DecisionTransformerGPT2Model
- forward
## DecisionTransformerModel
[[autodoc]] DecisionTransformerModel
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Decision Transformer
## Overview
The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345)
by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
The abstract from the paper is the following:
*We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem.
This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances
in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that
casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or
compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked
Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our
Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity,
Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on
Atari, OpenAI Gym, and Key-to-Door tasks.*
Tips:
This version of the model is for tasks where the state is a vector, image-based states will come soon.
This model was contributed by [edbeeching](https://huggingface.co/edbeeching). The original code can be found [here](https://github.com/kzl/decision-transformer).
## DecisionTransformerConfig
[[autodoc]] DecisionTransformerConfig
## DecisionTransformerGPT2Model
[[autodoc]] DecisionTransformerGPT2Model
- forward
## DecisionTransformerModel
[[autodoc]] DecisionTransformerModel
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Deformable DETR
## Overview
The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
Deformable DETR mitigates the slow convergence issues and limited feature spatial resolution of the original [DETR](detr) by leveraging a new deformable attention module which only attends to a small set of key sampling points around a reference.
The abstract from the paper is the following:
*DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10 times less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.*
Tips:
- One can use [`DeformableDetrImageProcessor`] to prepare images (and optional targets) for the model.
- Training Deformable DETR is equivalent to training the original [DETR](detr) model. See the [resources](#resources) section below for demo notebooks.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png"
alt="drawing" width="600"/>
<small> Deformable DETR architecture. Taken from the <a href="https://arxiv.org/abs/2010.04159">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/fundamentalvision/Deformable-DETR).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Deformable DETR.
<PipelineTag pipeline="object-detection"/>
- Demo notebooks regarding inference + fine-tuning on a custom dataset for [`DeformableDetrForObjectDetection`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Deformable-DETR).
- See also: [Object detection task guide](../tasks/object_detection).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DeformableDetrImageProcessor
[[autodoc]] DeformableDetrImageProcessor
- preprocess
- pad_and_create_pixel_mask
- post_process_object_detection
## DeformableDetrFeatureExtractor
[[autodoc]] DeformableDetrFeatureExtractor
- __call__
- pad_and_create_pixel_mask
- post_process_object_detection
## DeformableDetrConfig
[[autodoc]] DeformableDetrConfig
## DeformableDetrModel
[[autodoc]] DeformableDetrModel
- forward
## DeformableDetrForObjectDetection
[[autodoc]] DeformableDetrForObjectDetection
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Deformable DETR
## Overview
The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
Deformable DETR mitigates the slow convergence issues and limited feature spatial resolution of the original [DETR](detr) by leveraging a new deformable attention module which only attends to a small set of key sampling points around a reference.
The abstract from the paper is the following:
*DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10 times less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.*
Tips:
- One can use [`DeformableDetrImageProcessor`] to prepare images (and optional targets) for the model.
- Training Deformable DETR is equivalent to training the original [DETR](detr) model. See the [resources](#resources) section below for demo notebooks.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png"
alt="drawing" width="600"/>
<small> Deformable DETR architecture. Taken from the <a href="https://arxiv.org/abs/2010.04159">original paper</a>.</small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/fundamentalvision/Deformable-DETR).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Deformable DETR.
<PipelineTag pipeline="object-detection"/>
- Demo notebooks regarding inference + fine-tuning on a custom dataset for [`DeformableDetrForObjectDetection`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Deformable-DETR).
- See also: [Object detection task guide](../tasks/object_detection).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DeformableDetrImageProcessor
[[autodoc]] DeformableDetrImageProcessor
- preprocess
- pad_and_create_pixel_mask
- post_process_object_detection
## DeformableDetrFeatureExtractor
[[autodoc]] DeformableDetrFeatureExtractor
- __call__
- pad_and_create_pixel_mask
- post_process_object_detection
## DeformableDetrConfig
[[autodoc]] DeformableDetrConfig
## DeformableDetrModel
[[autodoc]] DeformableDetrModel
- forward
## DeformableDetrForObjectDetection
[[autodoc]] DeformableDetrForObjectDetection
- forward
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeiT
<Tip>
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
</Tip>
## Overview
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://arxiv.org/abs/2010.11929) has shown that one can match or even outperform existing convolutional neural
networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on
expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more
efficiently trained transformers for image classification, requiring far less data and far less computing resources
compared to the original ViT models.
The abstract from the paper is the following:
*Recently, neural networks purely based on attention were shown to address image understanding tasks such as image
classification. However, these visual transformers are pre-trained with hundreds of millions of images using an
expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free
transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision
transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external
data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation
token ensuring that the student learns from the teacher through attention. We show the interest of this token-based
distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets
for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and
models.*
Tips:
- Compared to ViT, DeiT models use a so-called distillation token to effectively learn from a teacher (which, in the
DeiT paper, is a ResNet like-model). The distillation token is learned through backpropagation, by interacting with
the class ([CLS]) and patch tokens through the self-attention layers.
- There are 2 ways to fine-tune distilled models, either (1) in a classic way, by only placing a prediction head on top
of the final hidden state of the class token and not using the distillation signal, or (2) by placing both a
prediction head on top of the class token and on top of the distillation token. In that case, the [CLS] prediction
head is trained using regular cross-entropy between the prediction of the head and the ground-truth label, while the
distillation prediction head is trained using hard distillation (cross-entropy between the prediction of the
distillation head and the label predicted by the teacher). At inference time, one takes the average prediction
between both heads as final prediction. (2) is also called "fine-tuning with distillation", because one relies on a
teacher that has already been fine-tuned on the downstream dataset. In terms of models, (1) corresponds to
[`DeiTForImageClassification`] and (2) corresponds to
[`DeiTForImageClassificationWithTeacher`].
- Note that the authors also did try soft distillation for (2) (in which case the distillation prediction head is
trained using KL divergence to match the softmax output of the teacher), but hard distillation gave the best results.
- All released checkpoints were pre-trained and fine-tuned on ImageNet-1k only. No external data was used. This is in
contrast with the original ViT model, which used external data like the JFT-300M dataset/Imagenet-21k for
pre-training.
- The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into
[`ViTModel`] or [`ViTForImageClassification`]. Techniques like data
augmentation, optimization, and regularization were used in order to simulate training on a much larger dataset
(while only using ImageNet-1k for pre-training). There are 4 variants available (in 3 different sizes):
*facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and
*facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to
prepare images for the model.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DeiT.
<PipelineTag pipeline="image-classification"/>
- [`DeiTForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
Besides that:
- [`DeiTForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DeiTConfig
[[autodoc]] DeiTConfig
## DeiTFeatureExtractor
[[autodoc]] DeiTFeatureExtractor
- __call__
## DeiTImageProcessor
[[autodoc]] DeiTImageProcessor
- preprocess
## DeiTModel
[[autodoc]] DeiTModel
- forward
## DeiTForMaskedImageModeling
[[autodoc]] DeiTForMaskedImageModeling
- forward
## DeiTForImageClassification
[[autodoc]] DeiTForImageClassification
- forward
## DeiTForImageClassificationWithTeacher
[[autodoc]] DeiTForImageClassificationWithTeacher
- forward
## TFDeiTModel
[[autodoc]] TFDeiTModel
- call
## TFDeiTForMaskedImageModeling
[[autodoc]] TFDeiTForMaskedImageModeling
- call
## TFDeiTForImageClassification
[[autodoc]] TFDeiTForImageClassification
- call
## TFDeiTForImageClassificationWithTeacher
[[autodoc]] TFDeiTForImageClassificationWithTeacher
- call
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DeiT
<Tip>
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
</Tip>
## Overview
The DeiT model was proposed in [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, Hervé Jégou. The [Vision Transformer (ViT)](vit) introduced in [Dosovitskiy et al., 2020](https://arxiv.org/abs/2010.11929) has shown that one can match or even outperform existing convolutional neural
networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on
expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more
efficiently trained transformers for image classification, requiring far less data and far less computing resources
compared to the original ViT models.
The abstract from the paper is the following:
*Recently, neural networks purely based on attention were shown to address image understanding tasks such as image
classification. However, these visual transformers are pre-trained with hundreds of millions of images using an
expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free
transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision
transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external
data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation
token ensuring that the student learns from the teacher through attention. We show the interest of this token-based
distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets
for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and
models.*
Tips:
- Compared to ViT, DeiT models use a so-called distillation token to effectively learn from a teacher (which, in the
DeiT paper, is a ResNet like-model). The distillation token is learned through backpropagation, by interacting with
the class ([CLS]) and patch tokens through the self-attention layers.
- There are 2 ways to fine-tune distilled models, either (1) in a classic way, by only placing a prediction head on top
of the final hidden state of the class token and not using the distillation signal, or (2) by placing both a
prediction head on top of the class token and on top of the distillation token. In that case, the [CLS] prediction
head is trained using regular cross-entropy between the prediction of the head and the ground-truth label, while the
distillation prediction head is trained using hard distillation (cross-entropy between the prediction of the
distillation head and the label predicted by the teacher). At inference time, one takes the average prediction
between both heads as final prediction. (2) is also called "fine-tuning with distillation", because one relies on a
teacher that has already been fine-tuned on the downstream dataset. In terms of models, (1) corresponds to
[`DeiTForImageClassification`] and (2) corresponds to
[`DeiTForImageClassificationWithTeacher`].
- Note that the authors also did try soft distillation for (2) (in which case the distillation prediction head is
trained using KL divergence to match the softmax output of the teacher), but hard distillation gave the best results.
- All released checkpoints were pre-trained and fine-tuned on ImageNet-1k only. No external data was used. This is in
contrast with the original ViT model, which used external data like the JFT-300M dataset/Imagenet-21k for
pre-training.
- The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into
[`ViTModel`] or [`ViTForImageClassification`]. Techniques like data
augmentation, optimization, and regularization were used in order to simulate training on a much larger dataset
(while only using ImageNet-1k for pre-training). There are 4 variants available (in 3 different sizes):
*facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and
*facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to
prepare images for the model.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DeiT.
<PipelineTag pipeline="image-classification"/>
- [`DeiTForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
Besides that:
- [`DeiTForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DeiTConfig
[[autodoc]] DeiTConfig
## DeiTFeatureExtractor
[[autodoc]] DeiTFeatureExtractor
- __call__
## DeiTImageProcessor
[[autodoc]] DeiTImageProcessor
- preprocess
## DeiTModel
[[autodoc]] DeiTModel
- forward
## DeiTForMaskedImageModeling
[[autodoc]] DeiTForMaskedImageModeling
- forward
## DeiTForImageClassification
[[autodoc]] DeiTForImageClassification
- forward
## DeiTForImageClassificationWithTeacher
[[autodoc]] DeiTForImageClassificationWithTeacher
- forward
## TFDeiTModel
[[autodoc]] TFDeiTModel
- call
## TFDeiTForMaskedImageModeling
[[autodoc]] TFDeiTForMaskedImageModeling
- call
## TFDeiTForImageClassification
[[autodoc]] TFDeiTForImageClassification
- call
## TFDeiTForImageClassificationWithTeacher
[[autodoc]] TFDeiTForImageClassificationWithTeacher
- call
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DePlot
## Overview
DePlot was proposed in the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) from Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
The abstract of the paper states the following:
*Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.*
## Model description
DePlot is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct).
DePlot is a Visual Question Answering subset of `Pix2Struct` architecture. It renders the input question on the image and predicts the answer.
## Usage
Currently one checkpoint is available for DePlot:
- `google/deplot`: DePlot fine-tuned on ChartQA dataset
```python
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import requests
from PIL import Image
model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot")
processor = AutoProcessor.from_pretrained("google/deplot")
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
## Fine-tuning
To fine-tune DePlot, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faster convergence:
```python
from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup
optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000)
```
\ No newline at end of file
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DePlot
## Overview
DePlot was proposed in the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) from Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
The abstract of the paper states the following:
*Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.*
## Model description
DePlot is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct).
DePlot is a Visual Question Answering subset of `Pix2Struct` architecture. It renders the input question on the image and predicts the answer.
## Usage
Currently one checkpoint is available for DePlot:
- `google/deplot`: DePlot fine-tuned on ChartQA dataset
```python
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import requests
from PIL import Image
model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot")
processor = AutoProcessor.from_pretrained("google/deplot")
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
## Fine-tuning
To fine-tune DePlot, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faster convergence:
```python
from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup
optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000)
```
\ No newline at end of file
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DETA
## Overview
The DETA model was proposed in [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
DETA (short for Detection Transformers with Assignment) improves [Deformable DETR](deformable_detr) by replacing the one-to-one bipartite Hungarian matching loss
with one-to-many label assignments used in traditional detectors with non-maximum suppression (NMS). This leads to significant gains of up to 2.5 mAP.
The abstract from the paper is the following:
*Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture.*
Tips:
- One can use [`DetaImageProcessor`] to prepare images and optional targets for the model.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/deta_architecture.jpg"
alt="drawing" width="600"/>
<small> DETA overview. Taken from the <a href="https://arxiv.org/abs/2212.06137">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/jozhang97/DETA).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETA.
- Demo notebooks for DETA can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETA).
- See also: [Object detection task guide](../tasks/object_detection)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DetaConfig
[[autodoc]] DetaConfig
## DetaImageProcessor
[[autodoc]] DetaImageProcessor
- preprocess
- post_process_object_detection
## DetaModel
[[autodoc]] DetaModel
- forward
## DetaForObjectDetection
[[autodoc]] DetaForObjectDetection
- forward
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DETA
## Overview
The DETA model was proposed in [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
DETA (short for Detection Transformers with Assignment) improves [Deformable DETR](deformable_detr) by replacing the one-to-one bipartite Hungarian matching loss
with one-to-many label assignments used in traditional detectors with non-maximum suppression (NMS). This leads to significant gains of up to 2.5 mAP.
The abstract from the paper is the following:
*Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture.*
Tips:
- One can use [`DetaImageProcessor`] to prepare images and optional targets for the model.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/deta_architecture.jpg"
alt="drawing" width="600"/>
<small> DETA overview. Taken from the <a href="https://arxiv.org/abs/2212.06137">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/jozhang97/DETA).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETA.
- Demo notebooks for DETA can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETA).
- See also: [Object detection task guide](../tasks/object_detection)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DetaConfig
[[autodoc]] DetaConfig
## DetaImageProcessor
[[autodoc]] DetaImageProcessor
- preprocess
- post_process_object_detection
## DetaModel
[[autodoc]] DetaModel
- forward
## DetaForObjectDetection
[[autodoc]] DetaForObjectDetection
- forward
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DETR
## Overview
The DETR model was proposed in [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
The abstract from the paper is the following:
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
DETR reasons about the relations of the objects and the global image context to directly output the final set of
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
baselines.*
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr).
Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works:
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is
then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a
`nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the
feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` =
`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
`(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros.
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
object", and a MLP to predict bounding boxes for each query.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the
bounding boxes) are used to optimize the parameters of the model.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of
[`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process,
where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
Tips:
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
`num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the
authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
absolute position embeddings. By default, the parameter `position_embedding_type` of
[`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of
[`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses
are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
_num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be
set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with
any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models).
Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of
[`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that
config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
[`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
Alternatively, one can also define a custom `collate_fn` in order to batch images together, using
[`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`.
It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
There are three ways to instantiate a DETR model (depending on what you prefer):
Option 1: Instantiate DETR with pre-trained weights for entire model
```py
>>> from transformers import DetrForObjectDetection
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
```
Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```py
>>> from transformers import DetrConfig, DetrForObjectDetection
>>> config = DetrConfig()
>>> model = DetrForObjectDetection(config)
```
Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```py
>>> config = DetrConfig(use_pretrained_backbone=False)
>>> model = DetrForObjectDetection(config)
```
As a summary, consider the following table:
| Task | Object detection | Instance segmentation | Panoptic segmentation |
|------|------------------|-----------------------|-----------------------|
| **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to COCO API) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
be be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR.
<PipelineTag pipeline="object-detection"/>
- All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset an be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
- See also: [Object detection task guide](../tasks/object_detection)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DETR specific outputs
[[autodoc]] models.detr.modeling_detr.DetrModelOutput
[[autodoc]] models.detr.modeling_detr.DetrObjectDetectionOutput
[[autodoc]] models.detr.modeling_detr.DetrSegmentationOutput
## DetrConfig
[[autodoc]] DetrConfig
## DetrImageProcessor
[[autodoc]] DetrImageProcessor
- preprocess
- post_process_object_detection
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## DetrFeatureExtractor
[[autodoc]] DetrFeatureExtractor
- __call__
- pad_and_create_pixel_mask
- post_process_object_detection
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## DetrModel
[[autodoc]] DetrModel
- forward
## DetrForObjectDetection
[[autodoc]] DetrForObjectDetection
- forward
## DetrForSegmentation
[[autodoc]] DetrForSegmentation
- forward
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DETR
## Overview
The DETR model was proposed in [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
The abstract from the paper is the following:
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
DETR reasons about the relations of the objects and the global image context to directly output the final set of
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
baselines.*
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/detr).
Here's a TLDR explaining how [`~transformers.DetrForObjectDetection`] works:
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
tensor of shape `(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
outputs a new lower-resolution feature map, typically of shape `(batch_size, 2048, height/32, width/32)`. This is
then projected to match the hidden dimension of the Transformer of DETR, which is `256` by default, using a
`nn.Conv2D` layer. So now, we have a tensor of shape `(batch_size, 256, height/32, width/32).` Next, the
feature map is flattened and transposed to obtain a tensor of shape `(batch_size, seq_len, d_model)` =
`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
longer than usual, but with a smaller `d_model` (which in NLP is typically 768 or higher).
Next, this is sent through the encoder, outputting `encoder_hidden_states` of the same shape (you can consider
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
`(batch_size, num_queries, d_model)`, with `num_queries` typically set to 100 and initialized with zeros.
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
to output `decoder_hidden_states` of the same shape: `(batch_size, num_queries, d_model)`. Next, two heads
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
object", and a MLP to predict bounding boxes for each query.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
bounding box). The [Hungarian matching algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) is used to find
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
the classes) and a linear combination of the L1 and [generalized IoU loss](https://giou.stanford.edu/) (for the
bounding boxes) are used to optimize the parameters of the model.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
segmentation). [`~transformers.DetrForSegmentation`] adds a segmentation mask head on top of
[`~transformers.DetrForObjectDetection`]. The mask head can be trained either jointly, or in a two steps process,
where one first trains a [`~transformers.DetrForObjectDetection`] model to detect bounding boxes around both
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
Tips:
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
`num_queries` of [`~transformers.DetrConfig`]). Note that it's good to have some slack (in COCO, the
authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
absolute position embeddings. By default, the parameter `position_embedding_type` of
[`~transformers.DetrConfig`] is set to `"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
the model output the correct number of objects of each class. If you set the parameter `auxiliary_loss` of
[`~transformers.DetrConfig`] to `True`, then prediction feedforward neural networks and Hungarian losses
are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
_num_boxes_ variable in the _DetrLoss_ class of _modeling_detr.py_. When training on multiple nodes, this should be
set to the average number of target boxes across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232).
- [`~transformers.DetrForObjectDetection`] and [`~transformers.DetrForSegmentation`] can be initialized with
any convolutional backbone available in the [timm library](https://github.com/rwightman/pytorch-image-models).
Initializing with a MobileNet backbone for example can be done by setting the `backbone` attribute of
[`~transformers.DetrConfig`] to `"tf_mobilenetv3_small_075"`, and then initializing the model with that
config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
[`~transformers.DetrImageProcessor`] to prepare images (and optional annotations in COCO format) for the
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
Alternatively, one can also define a custom `collate_fn` in order to batch images together, using
[`~transformers.DetrImageProcessor.pad_and_create_pixel_mask`].
- The size of the images will determine the amount of memory being used, and will thus determine the `batch_size`.
It is advised to use a batch size of 2 per GPU. See [this Github thread](https://github.com/facebookresearch/detr/issues/150) for more info.
There are three ways to instantiate a DETR model (depending on what you prefer):
Option 1: Instantiate DETR with pre-trained weights for entire model
```py
>>> from transformers import DetrForObjectDetection
>>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
```
Option 2: Instantiate DETR with randomly initialized weights for Transformer, but pre-trained weights for backbone
```py
>>> from transformers import DetrConfig, DetrForObjectDetection
>>> config = DetrConfig()
>>> model = DetrForObjectDetection(config)
```
Option 3: Instantiate DETR with randomly initialized weights for backbone + Transformer
```py
>>> config = DetrConfig(use_pretrained_backbone=False)
>>> model = DetrForObjectDetection(config)
```
As a summary, consider the following table:
| Task | Object detection | Instance segmentation | Panoptic segmentation |
|------|------------------|-----------------------|-----------------------|
| **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to COCO API) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
be be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETR.
<PipelineTag pipeline="object-detection"/>
- All example notebooks illustrating fine-tuning [`DetrForObjectDetection`] and [`DetrForSegmentation`] on a custom dataset an be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
- See also: [Object detection task guide](../tasks/object_detection)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DETR specific outputs
[[autodoc]] models.detr.modeling_detr.DetrModelOutput
[[autodoc]] models.detr.modeling_detr.DetrObjectDetectionOutput
[[autodoc]] models.detr.modeling_detr.DetrSegmentationOutput
## DetrConfig
[[autodoc]] DetrConfig
## DetrImageProcessor
[[autodoc]] DetrImageProcessor
- preprocess
- post_process_object_detection
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## DetrFeatureExtractor
[[autodoc]] DetrFeatureExtractor
- __call__
- pad_and_create_pixel_mask
- post_process_object_detection
- post_process_semantic_segmentation
- post_process_instance_segmentation
- post_process_panoptic_segmentation
## DetrModel
[[autodoc]] DetrModel
- forward
## DetrForObjectDetection
[[autodoc]] DetrForObjectDetection
- forward
## DetrForSegmentation
[[autodoc]] DetrForSegmentation
- forward
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DialoGPT
## Overview
DialoGPT was proposed in [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu, Bill Dolan. It's a GPT2 Model trained on 147M conversation-like exchanges extracted from
Reddit.
The abstract from the paper is the following:
*We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained
transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning
from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human
both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems
that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline
systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response
generation and the development of more intelligent open-domain dialogue systems.*
Tips:
- DialoGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- DialoGPT was trained with a causal language modeling (CLM) objective on conversational data and is therefore powerful
at response generation in open-domain dialogue systems.
- DialoGPT enables the user to create a chat bot in just 10 lines of code as shown on [DialoGPT's model card](https://huggingface.co/microsoft/DialoGPT-medium).
Training:
In order to train or fine-tune DialoGPT, one can use causal language modeling training. To cite the official paper: *We
follow the OpenAI GPT-2 to model a multiturn dialogue session as a long text and frame the generation task as language
modeling. We first concatenate all dialog turns within a dialogue session into a long text x_1,..., x_N (N is the
sequence length), ended by the end-of-text token.* For more information please confer to the original paper.
DialoGPT's architecture is based on the GPT2 model, so one can refer to [GPT2's documentation page](gpt2).
The original code can be found [here](https://github.com/microsoft/DialoGPT).
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DialoGPT
## Overview
DialoGPT was proposed in [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu, Bill Dolan. It's a GPT2 Model trained on 147M conversation-like exchanges extracted from
Reddit.
The abstract from the paper is the following:
*We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained
transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning
from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human
both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems
that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline
systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response
generation and the development of more intelligent open-domain dialogue systems.*
Tips:
- DialoGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- DialoGPT was trained with a causal language modeling (CLM) objective on conversational data and is therefore powerful
at response generation in open-domain dialogue systems.
- DialoGPT enables the user to create a chat bot in just 10 lines of code as shown on [DialoGPT's model card](https://huggingface.co/microsoft/DialoGPT-medium).
Training:
In order to train or fine-tune DialoGPT, one can use causal language modeling training. To cite the official paper: *We
follow the OpenAI GPT-2 to model a multiturn dialogue session as a long text and frame the generation task as language
modeling. We first concatenate all dialog turns within a dialogue session into a long text x_1,..., x_N (N is the
sequence length), ended by the end-of-text token.* For more information please confer to the original paper.
DialoGPT's architecture is based on the GPT2 model, so one can refer to [GPT2's documentation page](gpt2).
The original code can be found [here](https://github.com/microsoft/DialoGPT).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment