"vscode:/vscode.git/clone" did not exist on "e7d541c4104f0684116a09be1050cf20c93d9f08"
Unverified Commit eab5f596 authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

[s2s] add create student script (#7290)


Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
Co-authored-by: default avatarSam Shleifer <sshleifer@gmail.com>
parent e50a931c
......@@ -369,7 +369,7 @@ runtime: 6H on NVIDIA RTX 24GB GPU
If you are using `wandb` and comparing the two distillation methods, using this entry point will make your logs consistent,
because you will have the same hyperparameters logged in every run.
#### With a teacher
#### With a teacher (Intermediate Supervision)
*Note* only BART variants are supported
In this method, we use try to enforce that the student and teacher produce similar encoder_outputs, logits, and hidden_states using `BartSummarizationDistiller`.
......@@ -378,7 +378,7 @@ This is how `sshleifer/distilbart-xsum*` checkpoints were produced.
The command that produced `sshleifer/distilbart-xsum-12-6` is:
```bash
./train_distilbart_xsum.sh
./train_distilbart_xsum.sh --logger_name wandb --gpus 1
```
runtime: 13H on V-100 16GB GPU.
......
......@@ -4,7 +4,6 @@ import argparse
import gc
import os
import sys
import warnings
from pathlib import Path
from typing import List
......@@ -15,18 +14,10 @@ from torch.nn import functional as F
from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
from initialization_utils import copy_layers, init_student
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5Config, T5ForConditionalGeneration
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
from utils import (
any_requires_grad,
assert_all_frozen,
calculate_bleu,
freeze_params,
label_smoothed_nll_loss,
pickle_load,
use_task_specific_params,
)
from utils import calculate_bleu, freeze_params, label_smoothed_nll_loss, pickle_load, use_task_specific_params
# need the parent dir module
......@@ -41,87 +32,50 @@ class BartSummarizationDistiller(SummarizationModule):
def __init__(self, hparams):
assert Path(hparams.data_dir).exists()
student, student_cfg, teacher = self.pre_init(hparams)
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
save_dir = self.output_dir.joinpath("student")
super().__init__(hparams, model=student, config=student_cfg)
hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default
student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers(
teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir
)
if hparams.length_penalty != -1:
student.config.length_penalty = hparams.length_penalty
super().__init__(hparams, model=student, config=student.config)
self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int]
self.different_encoder = hparams.student_encoder_layers != teacher.config.encoder_layers
self.different_decoder = hparams.student_decoder_layers != teacher.config.decoder_layers
self.teacher = teacher
use_task_specific_params(self.teacher, "summarization")
freeze_params(self.teacher)
self.sanity_check_gradients()
if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder.
try:
del self.teacher.model.encoder
except AttributeError: # T5
del self.teacher.encoder
# Intermediate supervision: Decide which layers to supervise
if hparams.supervise_forward:
self.d_matches = get_layers_to_supervise(
n_student=len(self.d_layer_ids), n_teacher=self.teacher.config.decoder_layers
)
else:
self.d_matches = self.d_layer_ids
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
self.temperature = 2.0
self.alpha_mlm = hparams.alpha_mlm
self.alpha_ce = hparams.alpha_ce
self.alpha_hid = hparams.alpha_hid
# self.alpha_cos = hparams.alpha_cos
self.alpha_encoder_loss = self.hparams.alpha_encoder_loss
self.alpha_encoder_loss = hparams.alpha_encoder_loss
gc.collect()
torch.cuda.empty_cache()
def sanity_check_gradients(self):
assert_all_frozen(self.teacher)
assert_all_frozen(self.model.model.decoder.embed_tokens)
assert_all_frozen(self.model.model.encoder.embed_tokens)
if self.different_encoder:
assert any_requires_grad(self.model.model.encoder)
else:
freeze_params(self.model.model.encoder)
del self.teacher.model.encoder
def pre_init(self, hparams):
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
student_updates = {
"decoder_layers": hparams.student_decoder_layers,
"encoder_layers": hparams.student_encoder_layers,
}
if hparams.length_penalty != -1:
student_updates["length_penalty"] = hparams.length_penalty
e_layers_to_copy: List = get_layers_to_copy(student_updates["encoder_layers"], teacher.config.encoder_layers)
hparams.e_layer_to_copy = e_layers_to_copy
d_layers_to_copy: List = get_layers_to_copy(student_updates["decoder_layers"], teacher.config.decoder_layers)
if hparams.supervise_forward:
hparams.d_matches = get_layers_to_supervise(
student_updates["decoder_layers"], teacher.config.decoder_layers
)
else:
hparams.d_matches = d_layers_to_copy
hparams.d_layer_to_copy = d_layers_to_copy
kw = teacher.config.to_diff_dict()
kw.update(student_updates)
# Copy weights
student_cfg = teacher.config_class(**kw)
student = type(teacher)(student_cfg)
student, _ = init_student(student, teacher)
save_dir = self.output_dir.joinpath("student")
self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
student.save_pretrained(save_dir)
hparams.model_name_or_path = str(save_dir)
return student, student_cfg, teacher
def copy_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
if teacher.config.model_type == "t5":
return self.copy_t5_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.encoder_layers
self.different_decoder = hparams.student_decoder_layers != teacher.config.decoder_layers
if self.different_decoder:
copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
if self.different_encoder:
copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)
def copy_t5_to_student(self, d_layers_to_copy, e_layers_to_copy, hparams, student, teacher):
self.different_encoder: bool = hparams.student_encoder_layers != teacher.config.num_layers
self.different_decoder = hparams.student_decoder_layers != teacher.config.num_layers
if self.different_decoder:
copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
if self.different_encoder:
copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)
def calc_mse_loss(self, teacher_outputs: torch.Tensor, student_outputs: torch.Tensor, mask) -> torch.FloatTensor:
"""Supervise MSE(teacher.encoder_outputs, student.encoder_outputs)."""
# raise NotImplementedError()
if mask is not None:
# mask has False at padding_idx
sel_mask = mask[:, :, None].expand_as(student_outputs).bool()
......@@ -133,20 +87,15 @@ class BartSummarizationDistiller(SummarizationModule):
return F.mse_loss(s_logits_slct, t_logits_slct)
def calc_ce_loss(self, mask, s_logits, t_logits):
if mask is not None:
"""Copy pasted from distillbert (transformers/examples/distillation/)"""
# mask has False at padding_idx
sel_mask = mask[:, :, None].expand_as(s_logits)
s_logits_slct = torch.masked_select(
s_logits, sel_mask
) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(
t_logits, sel_mask
) # (bs * seq_length * voc_size) modulo the 1s in mask
else:
t_logits_slct = t_logits
s_logits_slct = s_logits # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
vocab_size = s_logits.size(-1)
s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = (
self.ce_loss_fct(
......@@ -155,7 +104,7 @@ class BartSummarizationDistiller(SummarizationModule):
)
* (self.temperature) ** 2
)
return loss_ce, s_logits_slct, t_logits_slct
return loss_ce
@staticmethod
def add_model_specific_args(parser, root_dir):
......@@ -164,10 +113,14 @@ class BartSummarizationDistiller(SummarizationModule):
return parser
def _step(self, batch):
# assert is_frozen(self.teacher)
# assert is_frozen(self.teacher) copied_decoder_layers
pad_token_id = self.tokenizer.pad_token_id
input_ids, src_mask, tgt_ids = batch["input_ids"], batch["attention_mask"], batch["labels"]
decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(labels)
else:
decoder_input_ids = shift_tokens_right(labels, pad_token_id)
# noinspection PyCallingNonCallable
lm_logits, dec_hidden, enc_outputs, enc_hidden_state = self(
input_ids,
......@@ -183,11 +136,11 @@ class BartSummarizationDistiller(SummarizationModule):
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
else:
lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
student_lm_loss, _ = label_smoothed_nll_loss(
lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id
)
def zero_tensor():
......@@ -196,15 +149,14 @@ class BartSummarizationDistiller(SummarizationModule):
loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
if self.different_encoder:
with torch.no_grad():
teacher_enc_outputs, teacher_enc_hid, _ = self.teacher.model.encoder(
teacher_enc_outputs, teacher_enc_hid, _ = self.teacher.get_encoder()(
input_ids, attention_mask=src_mask, output_hidden_states=True
)
# DEPRECATE THIS
if self.hparams.alpha_encoder_loss > 0:
loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, src_mask)
hid_loss_enc = self.calc_hidden_loss(
src_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
)
hid_loss_enc = self.calc_hidden_loss(src_mask, enc_hidden_state, teacher_enc_hid, self.e_layer_ids)
teacher_enc_outputs = (enc_outputs,)
assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)
......@@ -215,13 +167,15 @@ class BartSummarizationDistiller(SummarizationModule):
attention_mask=src_mask,
encoder_outputs=teacher_enc_outputs,
decoder_input_ids=decoder_input_ids,
lm_labels=tgt_ids,
lm_labels=labels,
output_hidden_states=True,
)
dec_mask = decoder_input_ids.ne(pad_token_id)
loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, lm_logits, tlogits)
if self.alpha_hid > 0:
hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_matches)
loss_ce = self.calc_ce_loss(dec_mask, lm_logits, tlogits)
if self.alpha_hid > 0: # Intermediate supervision of decoder hidden states
hid_loss_dec = self.calc_hidden_loss(
dec_mask, dec_hidden, tdec_hidden, self.d_matches, normalize_hidden=self.hparams.normalize_hidden
)
blended_loss = (
self.alpha_ce * loss_ce
......@@ -231,7 +185,9 @@ class BartSummarizationDistiller(SummarizationModule):
)
return blended_loss, loss_ce, student_lm_loss, loss_encoder, hid_loss_enc, hid_loss_dec
def calc_hidden_loss(self, attention_mask, hidden_states, hidden_states_T, matches):
@staticmethod
def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden):
"""MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT."""
msg = "expected list or tuple for hidden_states, got tensor of shape: "
assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
......@@ -239,7 +195,7 @@ class BartSummarizationDistiller(SummarizationModule):
valid_count = mask.sum() * hidden_states[0].size(-1)
student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
teacher_states = torch.stack([hidden_states_T[j] for j in matches])
if self.hparams.normalize_hidden:
if normalize_hidden:
student_states = F.layer_norm(student_states, student_states.shape[1:])
teacher_states = F.layer_norm(teacher_states, teacher_states.shape[1:])
mse = F.mse_loss(student_states, teacher_states, reduction="none")
......@@ -287,130 +243,9 @@ class BartTranslationDistiller(BartSummarizationDistiller):
return parser
class T5SummarizationDistiller(BartSummarizationDistiller):
def pre_init(self, hparams):
raise NotImplementedError("T5 Distillation does not work yet")
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
teacher = T5ForConditionalGeneration.from_pretrained(hparams.teacher)
n_layer = hparams.student_decoder_layers
assert n_layer == hparams.student_encoder_layers # TODO(SS): relax this constraint so that we can do 12-6.
d_layers_to_copy = get_layers_to_copy(n_layer, len(teacher.decoder.block))
e_layers_to_copy: List = get_layers_to_copy(n_layer, len(teacher.encoder.block))
student_updates = {"num_layers": n_layer}
hparams.d_layer_to_copy = d_layers_to_copy
hparams.e_layer_to_copy = e_layers_to_copy
kw = teacher.config.to_diff_dict()
kw.update(student_updates)
# Copy weights
student_cfg = T5Config(**kw)
student = T5ForConditionalGeneration(student_cfg)
student, _ = init_student(student, teacher)
self.copy_to_student(d_layers_to_copy, e_layers_to_copy, hparams, student, teacher)
Path(hparams.output_dir).mkdir(exist_ok=True)
task_specific_params = student.config.task_specific_params
if task_specific_params is not None:
student.config.update(task_specific_params.get("summarization", {})) # TODO: dont hardcode
save_dir = self.output_dir.joinpath("student")
save_dir.mkdir(exist_ok=True)
student.save_pretrained(save_dir)
hparams.model_name_or_path = str(save_dir)
return student, student_cfg, teacher
def freeze_embeds(self):
freeze_params(self.model.shared)
for d in [self.model.encoder, self.model.decoder]:
freeze_params(d.embed_tokens)
def sanity_check_gradients(self):
"""T5"""
assert_all_frozen(self.teacher)
assert_all_frozen(self.model.decoder.embed_tokens)
assert_all_frozen(self.model.encoder.embed_tokens)
if self.different_encoder:
assert any_requires_grad(self.model.encoder)
else:
freeze_params(self.model.encoder)
del self.teacher.model.encoder
if self.different_decoder:
assert any_requires_grad(self.model.decoder)
else:
freeze_params(self.model.decoder) # TODO(SS): very suspicious
def _step(self, batch):
pad_token_id = self.tokenizer.pad_token_id
source_ids, source_mask, y = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
decoder_input_ids = y[:, :-1].contiguous()
labels = y[:, 1:].clone()
labels[y[:, 1:] == pad_token_id] = -100
# noinspection PyCallingNonCallable
dec_mask = decoder_input_ids.ne(pad_token_id)
sloss, slogits, dec_hidden, enc_outputs, enc_hidden_state = self(
source_ids,
attention_mask=source_mask,
decoder_input_ids=decoder_input_ids,
labels=labels,
output_hidden_states=True,
output_attentions=False,
use_cache=False,
)
def zero_tensor():
return torch.tensor(0.0).type_as(sloss)
loss_encoder, hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor(), zero_tensor()
if self.different_encoder:
with torch.no_grad():
teacher_enc_outputs, teacher_enc_hid = self.teacher.encoder(
source_ids,
attention_mask=source_mask,
output_hidden_states=True,
use_cache=False,
)
if self.hparams.alpha_encoder_loss > 0:
loss_encoder = self.calc_mse_loss(enc_outputs, teacher_enc_outputs, source_mask)
hid_loss_enc = self.calc_hidden_loss(
source_mask, enc_hidden_state, teacher_enc_hid, self.hparams.e_layer_to_copy
)
teacher_enc_outputs = (enc_outputs,)
assert isinstance(teacher_enc_outputs, tuple), type(teacher_enc_outputs)
with torch.no_grad():
tloss, tlogits, tdec_hidden, _ = self.teacher(
source_ids,
attention_mask=source_mask,
encoder_outputs=teacher_enc_outputs,
decoder_input_ids=decoder_input_ids,
labels=labels,
output_hidden_states=True,
use_cache=False,
)
loss_ce, s_logits_slct, t_logits_slct = self.calc_ce_loss(dec_mask, slogits, tlogits)
if self.alpha_hid > 0:
hid_loss_dec = self.calc_hidden_loss(dec_mask, dec_hidden, tdec_hidden, self.hparams.d_matches)
blended_loss = (
self.alpha_ce * loss_ce
+ self.alpha_mlm * sloss
+ self.hparams.alpha_encoder_loss * loss_encoder
+ self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
)
return blended_loss, loss_ce, sloss, loss_encoder, hid_loss_enc, hid_loss_dec
def create_module(args):
t5 = "t5" in args.model_name_or_path
if args.no_teacher:
module_cls = TranslationModule if "translation" in args.task else SummarizationModule
elif t5: # DISTILL T5 WITH TEACHER FOR SUMMARIZATION
assert "translation" not in args.task, "t5 translation distillation not supported"
module_cls = T5SummarizationDistiller
else: # DISTILL WITH TEACHER
module_cls = BartTranslationDistiller if "translation" in args.task else BartSummarizationDistiller
args.setup_cls: str = module_cls.__name__
......@@ -443,56 +278,6 @@ def evaluate_checkpoint(ckpt_path: Path, dest_dir=None):
trainer.test(model)
LAYERS_TO_COPY = {
# maps num layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0],
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 8],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
LAYERS_TO_SUPERVISE = {
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
2: {1: [1], 2: [0, 1]},
}
def get_layers_to_supervise(n_student, n_teacher):
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def get_layers_to_copy(n_student, n_teacher):
try:
val = LAYERS_TO_COPY[n_teacher][n_student]
assert len(LAYERS_TO_SUPERVISE[n_teacher][n_student]) == len(val) == n_student
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first {n_student}"
)
return list(range(n_student))
def distill_main(args):
Path(args.output_dir).mkdir(exist_ok=True)
if len(os.listdir(args.output_dir)) > 3 and args.do_train:
......
from typing import List
from torch import nn
def init_student(student, teacher):
teacher_state_dict = teacher.state_dict()
info = student.load_state_dict(teacher_state_dict, strict=False)
assert info.missing_keys == [], info.missing_keys
return student, info
def copy_decoder_layers(teacher, student, l2copy=[0, 2, 4, 7, 9, 11]):
copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, l2copy)
def copy_layers(teacher_layers: nn.ModuleList, student_layers: nn.ModuleList, layers_to_copy: List) -> None:
layers_to_copy = nn.ModuleList([l for i, l in enumerate(teacher_layers) if i in layers_to_copy])
assert len(student_layers) == len(layers_to_copy), f"{len(student_layers)} != {len(layers_to_copy)}"
student_layers.load_state_dict(layers_to_copy.state_dict())
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
def copy_layers(src_layers: nn.ModuleList, dest_layers: nn.ModuleList, layers_to_copy: List[int]) -> None:
layers_to_copy = nn.ModuleList([l for i, l in enumerate(src_layers) if i in layers_to_copy])
assert len(dest_layers) == len(layers_to_copy), f"{len(dest_layers)} != {len(layers_to_copy)}"
dest_layers.load_state_dict(layers_to_copy.state_dict())
LAYERS_TO_COPY = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 8],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
LAYERS_TO_SUPERVISE = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def pick_layers_to_copy(n_student, n_teacher):
try:
val = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first {n_student}"
)
return list(range(n_student))
def get_layers_to_supervise(n_student, n_teacher) -> List[int]:
"""Used or the --supervise_forward kwarg"""
if n_student > n_teacher:
raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}")
elif n_teacher == n_student:
return list(range(n_teacher))
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def create_student_by_copying_alternating_layers(
teacher: Union[str, PreTrainedModel],
save_path: Union[str, Path] = "student",
e: Union[int, None] = None,
d: Union[int, None] = None,
copy_first_teacher_layers=False,
**extra_config_kwargs
) -> Tuple[PreTrainedModel, List[int], List[int]]:
"""Make a student by copying alternating layers from a teacher, save it to save_path.
Args:
teacher: str or PreTrainedModel if str, this will call AutoModelForSeq2SeqLM.from_pretrained(teacher) before
copying layers
save_path: where to save the student, defaults to student directory.
e: how many Encoder layers should the student have, default is fully copy of teacher
d: how many Decoder layers should the student have, default is fully copy of teacher
copy_first_teacher_layers: [bool] dont copy alternating layers, just the first e/d.
**extra_config_kwargs: extra kwargs to pass to the student, by default the teacher config is used.
Returns:
student: new, smaller model. (Also saves it to save_path)
e_layers_to_copy: list of which teacher encoder layers were used
d_layers_to_copy: list of which teacher decoder layers were used
"""
_msg = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(teacher, str):
AutoTokenizer.from_pretrained(teacher).save_pretrained(save_path) # purely for convenience
teacher = AutoModelForSeq2SeqLM.from_pretrained(teacher).eval()
else:
assert isinstance(teacher, PreTrainedModel), f"teacher must be a model or string got type {type(teacher)}"
init_kwargs = teacher.config.to_diff_dict()
try:
teacher_e, teacher_d = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
e = teacher_e
if d is None:
d = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d})
except AttributeError: # T5
teacher_e, teacher_d = teacher.config.num_layers, teacher.config.num_hidden_layers
assert e == d, "T5 Students must be symmetric"
init_kwargs["num_layers"] = e
# Kwargs to instantiate student = teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(extra_config_kwargs)
# Copy weights
student_cfg = teacher.config_class(**init_kwargs)
student = AutoModelForSeq2SeqLM.from_config(student_cfg)
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
info = student.load_state_dict(teacher.state_dict(), strict=False)
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
e_layers_to_copy, d_layers_to_copy = list(range(e)), list(range(d))
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}"
)
student.save_pretrained(save_path)
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
e_layers_to_copy: List[int] = pick_layers_to_copy(e, teacher_e)
d_layers_to_copy: List[int] = pick_layers_to_copy(d, teacher_d)
try:
copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)
copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)
copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}"
)
student.config.init_metadata = dict(
teacher_type=teacher.config.model_type,
copied_encoder_layers=e_layers_to_copy,
copied_decoder_layers=d_layers_to_copy,
)
student.save_pretrained(save_path)
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
#!/usr/bin/env python
import fire
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
def save_randomly_initialized_version(config_name: str, save_dir: str, **config_kwargs):
"""Save a randomly initialized version of a model using a pretrained config.
Args:
config_name: which config to use
save_dir: where to save the resulting model and tokenizer
config_kwargs: Passed to AutoConfig
Usage::
save_randomly_initialized_version("facebook/bart-large-cnn", "distilbart_random_cnn_6_3", encoder_layers=6, decoder_layers=3, num_beams=3)
"""
cfg = AutoConfig.from_pretrained(config_name, **config_kwargs)
model = AutoModelForSeq2SeqLM.from_config(cfg)
model.save_pretrained(save_dir)
AutoTokenizer.from_pretrained(config_name).save_pretrained(save_dir)
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
TINY_BART = "sshleifer/bart-tiny-random"
TINY_T5 = "patrickvonplaten/t5-tiny-random"
@require_torch
class MakeStudentTester(unittest.TestCase):
@cached_property
def teacher_config(self):
return AutoConfig.from_pretrained(TINY_BART)
def test_valid_t5(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_T5, tempfile.mkdtemp(), e=1, d=1)
self.assertEqual(student.config.num_hidden_layers, 1)
def test_invalid_t5(self):
# T5 students must have the same e==d because there is only one config property
with self.assertRaises(AssertionError):
student, *_ = create_student_by_copying_alternating_layers(TINY_T5, tempfile.mkdtemp(), e=1, d=None)
def test_same_decoder_small_encoder(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=1, d=None)
self.assertEqual(student.config.encoder_layers, 1)
self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers)
def test_small_enc_small_dec(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=1, d=1)
self.assertEqual(student.config.encoder_layers, 1)
self.assertEqual(student.config.decoder_layers, 1)
def test_raises_assert(self):
with self.assertRaises(AssertionError):
create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=None, d=None)
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export BS=16
export GAS=2
python distillation.py \
--teacher facebook/bart-large-xsum --data_dir xsum \
--student_decoder_layers 6 --student_encoder_layers 12 \
--freeze_encoder --freeze_embeds \
--learning_rate=3e-4 \
--do_train \
--do_predict \
--fp16 \
--val_check_interval 0.1 --n_val 1000 \
--teacher facebook/bart-large-xsum --data_dir $XSUM_DIR \
--fp16 --fp16_opt_level=O1 \
--val_check_interval 0.1 --n_val 1000 --eval_beams 2 --length_penalty=0.5 \
--max_target_length=60 --val_max_target_length=60 --test_max_target_length=100 \
--student_decoder_layers 6 --student_encoder_layers 12 \
--freeze_encoder --freeze_embeds \
--model_name_or_path IGNORED \
--alpha_hid=3. --length_penalty=0.5 \
--train_batch_size=$BS --eval_batch_size=$BS --gradient_accumulation_steps=$GAS --num_train_epochs=6 \
--tokenizer_name facebook/bart-large \
--alpha_hid=3. \
--train_batch_size=16 --eval_batch_size=16 --gradient_accumulation_steps=2 \
--sortish_sampler \
--num_train_epochs=6 \
--warmup_steps 500 \
--output_dir distilbart_xsum_12_6 \
"$@"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment