Unverified Commit e71f2863 authored by Raushan Turganbay's avatar Raushan Turganbay Committed by GitHub
Browse files

Add LLaVa NeXT Video (#31252)



* squash into single commit

* run diff once more

* docstring

* tests

* minor chnages and ready to go

* Update src/transformers/models/llava_next_video/processing_llava_next_video.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_modeling_vipllava.py
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* [run-slow] llava-next-video

* [run-slow] llava-next-video

* [run-slow] llava_next_video

* fix two tests

* fix slow tests

* remove logit checks due to numeric errors

* run test once more

* [run-slow] llava_next_video

* final try to pass the test

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* [run-slow] llava_next_video

* style

* fix

* style

---------
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent b1ec7454
......@@ -794,6 +794,8 @@
title: Llava
- local: model_doc/llava_next
title: LLaVA-NeXT
- local: model_doc/llava-next-video
title: LLaVa-NeXT-Video
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha
......
......@@ -182,6 +182,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Llama3](model_doc/llama3) | ✅ | ❌ | ✅ |
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
| [LLaVa-NeXT-Video](model_doc/llava-next-video) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
......
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LLaVa-NeXT-Video
## Overview
The LLaVa-NeXT-Video model was proposed in [LLaVA-NeXT: A Strong Zero-shot Video Understanding Model
](https://llava-vl.github.io/blog/2024-04-30-llava-next-video/) by Yuanhan Zhang, Bo Li, Haotian Liu, Yong Jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, Chunyuan Li. LLaVa-NeXT-Video improves upon [LLaVa-NeXT](llava_next) by fine-tuning on a mix if video and image dataset thus increasing the model's performance on videos.
[LLaVA-NeXT](llava_next) surprisingly has strong performance in understanding video content in zero-shot fashion with the AnyRes technique that it uses. The AnyRes technique naturally represents a high-resolution image into multiple images. This technique is naturally generalizable to represent videos because videos can be considered as a set of frames (similar to a set of images in LLaVa-NeXT). The current version of LLaVA-NeXT makes use of AnyRes and trains with supervised fine-tuning (SFT) on top of LLaVA-Next on video data to achieves better video understanding capabilities.The model is a current SOTA among open-source models on [VideoMME bench](https://arxiv.org/abs/2405.21075).
The introduction from the blog is the following:
On January 30, 2024, we released LLaVA-NeXT, an open-source Large Multimodal Model (LMM) that has been trained exclusively on text-image data. With the proposed AnyRes technique, it boosts capabilities in reasoning, OCR, and world knowledge, demonstrating remarkable performance across a spectrum of image-based multimodal understanding tasks, and even exceeding Gemini-Pro on several image benchmarks, e.g. MMMU and MathVista.
**In today’s exploration, we delve into the performance of LLaVA-NeXT within the realm of video understanding tasks. We reveal that LLaVA-NeXT surprisingly has strong performance in understanding video content. The current version of LLaVA-NeXT for videos has several improvements:
- Zero-shot video representation capabilities with AnyRes: The AnyRes technique naturally represents a high-resolution image into multiple images that a pre-trained VIT is able to digest, and forms them into a concantenated sequence. This technique is naturally generalizable to represent videos (consisting of multiple frames), allowing the image-only-trained LLaVA-Next model to perform surprisingly well on video tasks. Notably, this is the first time that LMMs show strong zero-shot modality transfer ability.
- Inference with length generalization improves on longer videos. The linear scaling technique enables length generalization, allowing LLaVA-NeXT to effectively handle long-video beyond the limitation of the "max_token_length" of the LLM.
- Strong video understanding ability. (1) LLaVA-Next-Image, which combines the above two techniques, yields superior zero-shot performance than open-source LMMs tuned on videos. (2) LLaVA-Next-Video, further supervised fine-tuning (SFT) LLaVA-Next-Image on video data, achieves better video understanding capabilities compared to LLaVA-Next-Image. (3) LLaVA-Next-Video-DPO, which aligns the model response with AI feedback using direct preference optimization (DPO), showing significant performance boost.
- Efficient deployment and inference with SGLang. It allows 5x faster inference on video tasks, allowing more scalable serving such as million-level video re-captioning. See instructions in our repo.**
This model was contributed by [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/LLaVA-VL/LLaVA-NeXT/tree/inference).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. You can use tokenizer's `apply_chat_template` to format your prompts correctly. Below is an example of how to do that.
We will use [LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf) and a conversation history of videos and images. Each content field has to be a list of dicts, as follows:
```python
from transformers import LlavaNextVideoProcessor
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions."},
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "What’s shown in this image?"},
{"type": "image"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your visuals
print(text_prompt)
```
## Usage example
### Single Media Mode
The model can accept both images and videos as input. Here's an example code for inference in half-precision (`torch.float16`):
```python
import av
import torch
import numpy as np
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
# Load the model in half-precision
model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", torch_dtype=torch.float16, device_map="auto")
processor = LlavaNextVideoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
# Load the video as an np.array, sampling uniformly 8 frames (can sample more for longer videos)
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
video = read_video_pyav(container, indices)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=prompt, videos=video, return_tensors="pt")
out = model.generate(**inputs, max_new_tokens=60)
processor.batch_decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
```
### Mixed Media Mode
The model can also generate from an interleaved image-video inputs. However note, that it was not trained in interleaved image-video setting which might affect the performance. Below is an example usage for mixed media input, add the following lines to the above code snippet:
```python
from PIL import Image
import requests
# Generate from image and video mixed inputs
# Load and image and write a new prompt
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "How many cats are there in the image?"},
{"type": "image"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "There are two cats"}],
},
{
"role": "user",
"content": [
{"type": "text", "text": "Why is this video funny?"},
{"type": "video"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(text=prompt, images=image, videos=clip, padding=True, return_tensors="pt")
# Generate
generate_ids = model.generate(**inputs, max_length=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
```
## Model optimization
### Quantization using Bitsandbytes for memory efficiency
The model can be loaded in lower bits, significantly reducing memory burden while maintaining the performance of the original model. This allows for efficient deployment on resource-constrained cases.
First make sure to install bitsandbytes by running `pip install bitsandbytes` and to have access to a CUDA compatible GPU device. Load the quantized model by simply adding [`BitsAndBytesConfig`](../main_classes/quantization#transformers.BitsAndBytesConfig) as shown below:
```python
from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoProcessor
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", quantization_config=quantization_config, device_map="auto")
```
### Flash-Attention 2 to speed-up generation
Additionally, we can greatly speed-up model inference by using [Flash Attention](../perf_train_gpu_one.md#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
Also, you should have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
To load and run a model using Flash Attention-2, simply add `attn_implementation="flash_attention_2"` when loading the model as follows:
```python
from transformers import LlavaNextVideoForConditionalGeneration
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
"llava-hf/LLaVA-NeXT-Video-7B-hf",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(0)
```
## LlavaNextVideoConfig
[[autodoc]] LlavaNextVideoConfig
## LlavaNextVideoProcessor
[[autodoc]] LlavaNextVideoProcessor
## LlavaNextVideoImageProcessor
[[autodoc]] LlavaNextVideoImageProcessor
## LlavaNextVideoForConditionalGeneration
[[autodoc]] LlavaNextVideoForConditionalGeneration
- forward
......@@ -55,6 +55,7 @@ FlashAttention-2 is currently supported for the following architectures:
* [Llama](https://huggingface.co/docs/transformers/model_doc/llama#transformers.LlamaModel)
* [Llava](https://huggingface.co/docs/transformers/model_doc/llava)
* [Llava-NeXT](https://huggingface.co/docs/transformers/model_doc/llava_next)
* [Llava-NeXT-Video](https://huggingface.co/docs/transformers/model_doc/llava_next_video)
* [VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)
* [VideoLlava](https://huggingface.co/docs/transformers/model_doc/video_llava)
* [M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)
......
......@@ -516,6 +516,10 @@ _import_structure = {
"LlavaNextConfig",
"LlavaNextProcessor",
],
"models.llava_next_video": [
"LlavaNextVideoConfig",
"LlavaNextVideoProcessor",
],
"models.longformer": [
"LongformerConfig",
"LongformerTokenizer",
......@@ -1148,6 +1152,7 @@ else:
_import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"])
_import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"])
_import_structure["models.llava_next"].append("LlavaNextImageProcessor")
_import_structure["models.llava_next_video"].append("LlavaNextVideoImageProcessor")
_import_structure["models.mask2former"].append("Mask2FormerImageProcessor")
_import_structure["models.maskformer"].extend(["MaskFormerFeatureExtractor", "MaskFormerImageProcessor"])
_import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"])
......@@ -2432,6 +2437,12 @@ else:
"LlavaNextPreTrainedModel",
]
)
_import_structure["models.llava_next_video"].extend(
[
"LlavaNextVideoForConditionalGeneration",
"LlavaNextVideoPreTrainedModel",
]
)
_import_structure["models.longformer"].extend(
[
"LongformerForMaskedLM",
......@@ -5137,6 +5148,10 @@ if TYPE_CHECKING:
LlavaNextConfig,
LlavaNextProcessor,
)
from .models.llava_next_video import (
LlavaNextVideoConfig,
LlavaNextVideoProcessor,
)
from .models.longformer import (
LongformerConfig,
LongformerTokenizer,
......@@ -5804,6 +5819,7 @@ if TYPE_CHECKING:
)
from .models.levit import LevitFeatureExtractor, LevitImageProcessor
from .models.llava_next import LlavaNextImageProcessor
from .models.llava_next_video import LlavaNextVideoImageProcessor
from .models.mask2former import Mask2FormerImageProcessor
from .models.maskformer import (
MaskFormerFeatureExtractor,
......@@ -6874,6 +6890,10 @@ if TYPE_CHECKING:
LlavaNextForConditionalGeneration,
LlavaNextPreTrainedModel,
)
from .models.llava_next_video import (
LlavaNextVideoForConditionalGeneration,
LlavaNextVideoPreTrainedModel,
)
from .models.longformer import (
LongformerForMaskedLM,
LongformerForMultipleChoice,
......
......@@ -125,6 +125,7 @@ from . import (
llama,
llava,
llava_next,
llava_next_video,
longformer,
longt5,
luke,
......
......@@ -141,6 +141,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("llava", "LlavaConfig"),
("llava-next-video", "LlavaNextVideoConfig"),
("llava_next", "LlavaNextConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
......@@ -421,6 +422,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("llama2", "Llama2"),
("llama3", "Llama3"),
("llava", "LLaVa"),
("llava-next-video", "LLaVa-NeXT-Video"),
("llava_next", "LLaVA-NeXT"),
("longformer", "Longformer"),
("longt5", "LongT5"),
......
......@@ -95,6 +95,7 @@ else:
("layoutlmv3", ("LayoutLMv3ImageProcessor",)),
("levit", ("LevitImageProcessor",)),
("llava", ("CLIPImageProcessor",)),
("llava-next-video", ("LlavaNextVideoImageProcessor",)),
("llava_next", ("LlavaNextImageProcessor",)),
("mask2former", ("Mask2FormerImageProcessor",)),
("maskformer", ("MaskFormerImageProcessor",)),
......
......@@ -299,6 +299,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
("idefics2", "Idefics2ForConditionalGeneration"),
("layoutlm", "LayoutLMForMaskedLM"),
("llava", "LlavaForConditionalGeneration"),
("llava-next-video", "LlavaNextVideoForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("longformer", "LongformerForMaskedLM"),
("luke", "LukeForMaskedLM"),
......@@ -700,6 +701,7 @@ MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
("instructblipvideo", "InstructBlipVideoForConditionalGeneration"),
("kosmos-2", "Kosmos2ForConditionalGeneration"),
("llava", "LlavaForConditionalGeneration"),
("llava-next-video", "LlavaNextVideoForConditionalGeneration"),
("llava_next", "LlavaNextForConditionalGeneration"),
("paligemma", "PaliGemmaForConditionalGeneration"),
("pix2struct", "Pix2StructForConditionalGeneration"),
......
......@@ -69,6 +69,7 @@ PROCESSOR_MAPPING_NAMES = OrderedDict(
("layoutlmv2", "LayoutLMv2Processor"),
("layoutlmv3", "LayoutLMv3Processor"),
("llava", "LlavaProcessor"),
("llava-next-video", "LlavaNextVideoProcessor"),
("llava_next", "LlavaNextProcessor"),
("markuplm", "MarkupLMProcessor"),
("mctct", "MCTCTProcessor"),
......
......@@ -242,6 +242,7 @@ else:
),
),
("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava-next-video", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)),
("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)),
(
......
......@@ -545,8 +545,9 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
)
# Compute the maximum embed dimension
# max_image_feature_lens is max_feature_lens per batch
feature_lens = feature_lens.to(input_ids.device)
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
embed_sequence_lengths = (
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
)
......@@ -577,9 +578,9 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_labels = None
if labels is not None:
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
final_input_ids = torch.full(
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
......@@ -589,12 +590,17 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
input_ids = input_ids.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
final_labels = None
if labels is not None:
labels = labels.to(target_device)
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
......@@ -609,6 +615,7 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
if left_padding:
# exclude padding on the left
max_embed_dim = max_embed_dim.to(target_device)
val = (max_embed_dim - embed_indices) <= embed_seq_lens
else:
# exclude padding on the right
......@@ -626,7 +633,7 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
return final_embedding, final_attention_mask, position_ids, final_labels
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
def pack_image_features(self, image_features, image_sizes, image_newline=None):
"""
......@@ -796,7 +803,7 @@ class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel):
)
inputs_embeds = inputs_embeds.to(image_features.dtype)
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
image_features,
feature_lens,
inputs_embeds,
......
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_llava_next_video": ["LlavaNextVideoConfig"],
"processing_llava_next_video": ["LlavaNextVideoProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_llava_next_video"] = ["LlavaNextVideoImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_llava_next_video"] = [
"LlavaNextVideoForConditionalGeneration",
"LlavaNextVideoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_llava_next_video import LlavaNextVideoConfig
from .processing_llava_next_video import LlavaNextVideoProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_llava_next_video import LlavaNextVideoImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llava_next_video import (
LlavaNextVideoForConditionalGeneration,
LlavaNextVideoPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from <path_to_diff_file.py>.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the diff. If any change should be done, please apply the change to the
# diff.py file directly.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import PretrainedConfig
from ..auto import CONFIG_MAPPING
class LlavaNextVideoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlavaNextVideoForConditionalGeneration`]. It is used to instantiate an
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [llava-hf/LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf)
model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32001):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
of the form `(height, width)`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
video_token_index (`int`, *optional*, defaults to 32000):
The video token index to encode the image prompt.
spatial_pool_mode (`str`, *optional*, defaults to `"average"`):
Pooling mode to use for videos. Can be "average", "max" or "conv".
spatial_pool_stride (`int`, *optional*, defaults to 2):
Stride used in the pooling layer for videos.
Example:
```python
>>> from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> configuration = LlavaNextVideoConfig(vision_config, text_config)
>>> model = LlavaNextVideoForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llava_next_video"
is_composition = True
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32001,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_grid_pinpoints=None,
tie_word_embeddings=False,
video_token_index=32000,
spatial_pool_mode="average",
spatial_pool_stride=2,
**kwargs,
):
self.video_token_index = video_token_index
self.spatial_pool_mode = spatial_pool_mode
self.spatial_pool_stride = spatial_pool_stride
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert LLaVa-NeXT-Video checkpoints from the original repository.
URL: https://github.com/LLaVA-VL/LLaVA-NeXT/tree/inference
"""
import argparse
import glob
import json
from pathlib import Path
import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from safetensors import safe_open
from transformers import (
AddedToken,
AutoConfig,
AutoTokenizer,
LlavaNextImageProcessor,
LlavaNextVideoConfig,
LlavaNextVideoForConditionalGeneration,
LlavaNextVideoImageProcessor,
LlavaNextVideoProcessor,
)
KEYS_TO_MODIFY_MAPPING = {
"model.vision_tower.": "",
".vision_resampler": "", # all lmms-lab models do avg pooling, so no vision_resampler
"model.mm_projector": "multi_modal_projector",
"model": "model.model",
"vision_model.model": "vision_model",
"lm_head": "language_model.lm_head",
"model.model": "language_model.model",
"multi_modal_projector.0": "multi_modal_projector.linear_1",
"multi_modal_projector.2": "multi_modal_projector.linear_2",
"language_model.model.image_newline": "image_newline",
}
# {{SYSTEM_PROMPT}} USER: <image>\n{{PROMPT}} ASSISTANT:" assistant end with "</s> "
chat_vicuna = (
"{% for message in messages %}"
"{% if message['role'] == 'system' %}"
"{{ message['content'][0]['text'] }}"
"{% else %}"
"{{ message['role'].upper() + ': '}}"
"{% endif %}"
"{# Render all images first #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}"
"{{ '<image>\n' }}"
"{% endfor %}"
"{# Render all text next #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}"
"{{ content['text'] + ' '}}"
"{% endfor %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ 'ASSISTANT:' }}"
"{% endif %}"
)
# "[INST] <image>\nWhat is shown in this image? [/INST]" assistant end with "</s> "
chat_mistral = (
"{% for message in messages %}"
"{% if message['role'] == 'user' %}"
"{{ '[INST] ' }}"
"{# Render all images first #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}"
"{{ '<image>\n' }}"
"{% endfor %}"
"{# Render all text next #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}"
"{{ content['text'] }}"
"{% endfor %}"
"{{' [/INST]' }}"
"{% elif message['role'] == 'assistant' %}"
r"{{ ' ' + message['content'][0]['text'] + '<\s> '}}"
"{% else %}"
"{{ raise_exception('Only user and assistant roles are supported!') }}"
"{% endif %}"
"{% endfor %}"
)
# "<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
chat_yi = (
"{% for message in messages %}"
"{{'<|im_start|>' + message['role'] + '\n'}}"
"{# Render all images first #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}"
"{{ '<image>\n' }}"
"{% endfor %}"
"{# Render all text next #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}"
"{{ content['text'] }}"
"{% endfor %}"
"{{'<|im_end|>' + '\n'}}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ '<|im_start|>assistant\n' }}"
"{% endif %}"
)
model2template = {
"lmms-lab/LLaVA-NeXT-Video-7B-32K": chat_mistral,
"lmms-lab/LLaVA-NeXT-Video-7B": chat_vicuna,
"lmms-lab/LLaVA-NeXT-Video-7B-DPO": chat_vicuna,
"lmms-lab/LLaVA-NeXT-Video-34B": chat_yi,
"lmms-lab/LLaVA-NeXT-Video-34B-DPO": chat_yi,
}
def load_original_state_dict(model_id):
directory_path = snapshot_download(repo_id=model_id, allow_patterns=["*.safetensors"])
original_state_dict = {}
for path in glob.glob(f"{directory_path}/*"):
if path.endswith(".safetensors"):
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
original_state_dict[key] = f.get_tensor(key)
return original_state_dict
def convert_state_dict_to_hf(state_dict):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith(".inv_freq"):
continue
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
new_state_dict[key] = value.to(torch.bfloat16)
return new_state_dict
def convert_llava_to_hf(model_id, pytorch_dump_folder_path, push_to_hub=False):
# load original config
filepath = hf_hub_download(repo_id=model_id, filename="config.json", repo_type="model")
with open(filepath) as f:
data = json.load(f)
print(data)
if model_id == "lmms-lab/LLaVA-NeXT-Video-7B-32K":
text_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
video_token_index = 32000
image_token_index = 32001
overwrite_text_config = {}
elif model_id in ["lmms-lab/LLaVA-NeXT-Video-7B", "lmms-lab/LLaVA-NeXT-Video-7B-DPO"]:
text_model_id = "lmsys/vicuna-7b-v1.5"
video_token_index = 32000
image_token_index = 32001
overwrite_text_config = {"factor": 2.0, "type": "linear"}
elif model_id in ["lmms-lab/LLaVA-NeXT-Video-34B", "lmms-lab/LLaVA-NeXT-Video-34B-DPO"]:
text_model_id = "NousResearch/Nous-Hermes-2-Yi-34B"
video_token_index = 64000
image_token_index = 64001
overwrite_text_config = {}
else:
raise ValueError("Incorrect checkpoint referenced. Text model-id not identified!")
vision_model_id = data["mm_vision_tower"]
torch.set_default_dtype(torch.bfloat16)
text_config = AutoConfig.from_pretrained(text_model_id)
text_config = text_config.to_dict()
text_config.update(overwrite_text_config)
tokenizer = AutoTokenizer.from_pretrained(text_model_id, use_fast=True, padding_side="left")
tokenizer.add_tokens(AddedToken("<video>", special=True, normalized=False), special_tokens=True)
tokenizer.add_tokens(AddedToken("<image>", special=True, normalized=False), special_tokens=True)
image_processor = LlavaNextImageProcessor.from_pretrained(vision_model_id)
video_processor = LlavaNextVideoImageProcessor.from_pretrained(vision_model_id)
processor = LlavaNextVideoProcessor(
tokenizer=tokenizer,
video_processor=video_processor,
image_processor=image_processor,
chat_template=model2template[model_id],
)
config = LlavaNextVideoConfig(
text_config=text_config,
image_grid_pinpoints=image_processor.image_grid_pinpoints,
use_image_newline_parameter=True,
video_token_index=video_token_index,
image_token_index=image_token_index,
)
with init_empty_weights():
model = LlavaNextVideoForConditionalGeneration(config)
# load original state dict
state_dict = load_original_state_dict(model_id)
state_dict = convert_state_dict_to_hf(state_dict)
model.load_state_dict(state_dict, assign=True, strict=True)
# See https://nlp.stanford.edu/~johnhew/vocab-expansion.html for why we get mean/stdev this way to expand embeddings
pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we resize the model
# Pad to 64 for performance reasons
pad_shape = 64
vocab_size = config.text_config.vocab_size
# this one has 2 additional tokens, namely <image>, <video> and <pad>
num_tokens = vocab_size + 3
model.resize_token_embeddings(num_tokens, pad_to_multiple_of=pad_shape)
model.language_model.model.embed_tokens.weight.data[vocab_size:] = torch.stack(
tuple(
(dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[vocab_size:].shape[0]))
),
dim=0,
)
model.language_model.lm_head.weight.data[vocab_size:] = torch.stack(
tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[vocab_size:].shape[0]))),
dim=0,
)
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor for {model_id} to {pytorch_dump_folder_path}")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
repo_id = model_id.split("/")[-1]
print(f"Pushing model to hub repo: {repo_id}")
model.push_to_hub(f"llava-hf/{repo_id}-hf")
processor.push_to_hub(f"llava-hf/{repo_id}-hf")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id",
help="Hub location of the model to convert",
default="lmms-lab/LLaVA-NeXT-Video-7B",
choices=[
"lmms-lab/LLaVA-NeXT-Video-7B",
"lmms-lab/LLaVA-NeXT-Video-7B-DPO",
"lmms-lab/LLaVA-NeXT-Video-7B-32K",
"lmms-lab/LLaVA-NeXT-Video-34B",
"lmms-lab/LLaVA-NeXT-Video-34B-DPO",
],
required=False,
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_llava_to_hf(args.model_id, args.pytorch_dump_folder_path, args.push_to_hub)
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PretrainedConfig
from transformers.models.llava_next.modeling_llava_next import (
LlavaNextCausalLMOutputWithPast,
LlavaNextForConditionalGeneration,
LlavaNextMultiModalProjector,
image_size_to_num_patches,
)
from ...cache_utils import Cache
from ...utils import (
logging,
replace_return_docstrings,
)
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class LlavaNextVideoConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LlavaNextVideoForConditionalGeneration`]. It is used to instantiate an
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [llava-hf/LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf)
model.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
video_token_index (`int`, *optional*, defaults to 32000):
The video token index to encode the image prompt.
image_token_index (`int`, *optional*, defaults to 32001):
The image token index to encode the image prompt.
spatial_pool_mode (`str`, *optional*, defaults to `"average"`):
Pooling mode to use for videos. Can be "average", "max" or "conv".
spatial_pool_stride (`int`, *optional*, defaults to 2):
Stride used in the pooling layer for videos.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
of the form `(height, width)`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
Example:
```python
>>> from transformers import LlavaNextVideoForConditionalGeneration, LlavaNextVideoConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> configuration = LlavaNextVideoConfig(vision_config, text_config)
>>> model = LlavaNextVideoForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "llava_next_video"
is_composition = True
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32001,
projector_hidden_act="gelu",
vision_feature_select_strategy="default",
vision_feature_layer=-2,
image_grid_pinpoints=None,
tie_word_embeddings=False,
video_token_index=32000,
spatial_pool_mode="average",
spatial_pool_stride=2,
**kwargs,
):
self.video_token_index = video_token_index
self.spatial_pool_mode = spatial_pool_mode
self.spatial_pool_stride = spatial_pool_stride
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
if vision_feature_select_strategy not in ["default", "full"]:
raise ValueError(
"vision_feature_select_strategy should be one of 'default', 'full'."
f"Got: {vision_feature_select_strategy}"
)
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
image_grid_pinpoints = (
image_grid_pinpoints
if image_grid_pinpoints is not None
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
)
self.image_grid_pinpoints = image_grid_pinpoints
if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"]()
self.text_config = text_config
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
@dataclass
class LlavaNextVideoCausalLMOutputWithPast(LlavaNextCausalLMOutputWithPast):
pass
class LlavaNextVideoPooler(nn.Module):
def __init__(self, config):
super().__init__()
mode = config.spatial_pool_mode
stride = config.spatial_pool_stride
out_channels = getattr(config, "spatial_pool_out_channels", config.vision_config.hidden_size)
self.image_size = config.vision_config.image_size // config.vision_config.patch_size**2
if mode == "average":
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
elif mode == "max":
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
elif mode == "conv":
self.pool = nn.Conv2d(
in_channels=config.vision_config.hidden_size,
out_channels=out_channels,
kernel_size=stride,
stride=stride,
)
else:
raise ValueError(f"Unknown pooling mode: {mode}. Has to be one of [`average`, `max`, `conv`]")
def forward(self, image_features):
ori_width = int(math.sqrt(image_features.shape[1] * self.image_size // self.image_size))
ori_height = int(ori_width * self.image_size // self.image_size)
batch_size, _, dim = image_features.shape
image_features_spatial = image_features.view(batch_size, ori_height, ori_height, dim).permute(0, 3, 1, 2)
image_features_spatial_pool = self.pool(image_features_spatial)
return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
class LlavaNextVideoMultiModalProjector(LlavaNextMultiModalProjector):
pass
class LlavaNextVideoForConditionalGeneration(LlavaNextForConditionalGeneration):
def __init__(self, config: LlavaNextVideoConfig, **super_kwargs):
super().__init__(config, **super_kwargs)
self.vision_resampler = LlavaNextVideoPooler(config)
self.post_init()
def _get_image_features(self, pixel_values, image_sizes):
# ! infer image_num_patches from image_sizes
image_num_patches = [
image_size_to_num_patches(
image_size=imsize,
grid_pinpoints=self.config.image_grid_pinpoints,
patch_size=self.config.vision_config.image_size,
)
for imsize in image_sizes
]
if pixel_values.dim() == 5:
# stacked if input is (batch_size, num_patches, num_channels, height, width)
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
pixel_values = torch.cat(_pixel_values_list, dim=0)
elif pixel_values.dim() != 4:
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_features.hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
image_features = self.multi_modal_projector(selected_image_feature)
image_features = torch.split(image_features, image_num_patches, dim=0)
return image_features
def _get_video_features(self, pixel_values):
batch_size, frames, channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * frames, channels, height, width)
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_features.hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
# Same as image features except that video has pooling layer
image_features = self.vision_resampler(selected_image_feature)
image_features = self.multi_modal_projector(image_features)
image_features = torch.split(image_features, frames, dim=0)
return image_features
@replace_return_docstrings(output_type=LlavaNextVideoCausalLMOutputWithPast, config_class="LlavaNextVideoConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
pixel_values_videos: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaNextVideoCausalLMOutputWithPast]:
r"""
Args:
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, image_size, image_size)):
The tensors corresponding to the input videos. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`LlavaNextVideoVideoProcessor.__call__`] for details. [`LlavaProcessor`] uses
[`LlavaNextVideoVideoProcessor`] for processing videos.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> import av
>>> from transformers import AutoProcessor, LlavaNextVideoForConditionalGeneration
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", device_map="auto)
>>> processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
>>> prompt = "USER: <video>\nWhy is this video funny? ASSISTANT:"
>>> video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
>>> container = av.open(video_path)
>>> # sample uniformly 8 frames from the video (model was trained with 32 frames per video, but this video is short)
>>> total_frames = container.streams.video[0].frames
>>> indices = np.arange(0, total_frames, total_frames / 8).astype(int)
>>> clip = read_video_pyav(container, indices)
>>> inputs_video = processor(text=prompt, videos=clip, return_tensors="pt").to(model.device)
>>> # load an image to generate from an image
>>> prompt = "USER:<image>\nWhat is shown in this image? ASSISTANT:"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs_image = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
>>> # Generate from video
>>> generate_ids = model.generate(**inputs_video, max_length=50)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"USER:\nWhy is this video funny? ASSISTANT: The humor in this video comes from the unexpected and endearing sight of a baby wearing glasses and (...)"
>>> # Generate from image
>>> generate_ids = model.generate(**inputs_image, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"USER: \nWhat's the content of the image? ASSISTANT: The image shows a red stop sign on a pole, with a traditional Chinese archway (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self.vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
self.vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# Merge text and images in prefill stage
if past_key_values is None:
# First merge image tokens if there are any
if pixel_values is not None and pixel_values.size(0) > 0:
image_features = self._get_image_features(pixel_values, image_sizes)
image_features, feature_lens = self.pack_image_features(
image_features,
image_sizes,
image_newline=self.image_newline,
)
inputs_embeds = inputs_embeds.to(image_features.dtype)
inputs_embeds, attention_mask, position_ids, labels, input_ids = (
self._merge_input_ids_with_image_features(
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
image_token_index=self.config.image_token_index,
)
)
# Then merge video tokens if there are any
if pixel_values_videos is not None and pixel_values_videos.size(0) > 0:
video_features = self._get_video_features(pixel_values_videos)
video_features = [feature.flatten(0, 1) for feature in video_features]
feature_lens = [feature.size(0) for feature in video_features]
video_features = torch.cat(video_features, dim=0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=video_features.device)
inputs_embeds, attention_mask, position_ids, labels, input_ids = (
self._merge_input_ids_with_image_features(
video_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
image_token_index=self.config.video_token_index,
)
)
# pixel_values is not None but is empty ---> text only cases
elif (pixel_values is not None and pixel_values.size(0) == 0) or (
pixel_values_videos is not None and pixel_values_videos.size(0) == 0
):
pass
# generation with cache, decoding stage
elif past_key_values is not None and (pixel_values is not None or pixel_values_videos is not None):
# Retrieve the first layer to inspect the logits and mask out the hidden states that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_length = input_ids.shape[1]
past_length = first_layer_past_key_value.shape[-1]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], past_length),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaNextVideoCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_values_videos=None,
image_sizes=None,
attention_mask=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids or self.config.video_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"pixel_values_videos": pixel_values_videos,
"image_sizes": image_sizes,
}
)
return model_inputs
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LLaVa-NeXT-Video."""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
convert_to_rgb,
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
infer_channel_dimension_format,
is_scaled_image,
is_valid_image,
make_list_of_images,
to_numpy_array,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
logger = logging.get_logger(__name__)
if is_vision_available():
from PIL import Image
def make_batched_videos(videos) -> List[VideoInput]:
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
return videos
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
if isinstance(videos[0], Image.Image):
return [videos]
elif len(videos[0].shape) == 4:
return [list(video) for video in videos]
elif is_valid_image(videos) and len(videos.shape) == 4:
return [list(videos)]
raise ValueError(f"Could not make batched video from {videos}")
class LlavaNextVideoImageProcessor(BaseImageProcessor):
r"""
Constructs a LLaVa-NeXT-Video video processor. Based on [`CLIPImageProcessor`] with incorporation of processing each video frame.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
method.
image_grid_pinpoints (`List` *optional*, defaults to `[[672, 336], [336, 672], [672, 672], [336, 1008], [1008, 336]]`):
A list of possible resolutions to use for processing high resolution images. The best resolution is selected
based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess`
method. Not used for processinf videos.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
`preprocess` method.
crop_size (`Dict[str, int]` *optional*, defaults to 224):
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values_videos"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
image_grid_pinpoints: List = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.image_grid_pinpoints = image_grid_pinpoints
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize with CLIP->LLaVa
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
resized to keep the input aspect ratio.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
default_to_square = True
if "shortest_edge" in size:
size = size["shortest_edge"]
default_to_square = False
elif "height" in size and "width" in size:
size = (size["height"], size["width"])
else:
raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
output_size = get_resize_output_image_size(
image,
size=size,
default_to_square=default_to_square,
input_data_format=input_data_format,
)
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def _preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Image.Image:
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput`):
Batch of frames (one video) to preprocess. Expects a batch of frames with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
return images
def preprocess(
self,
images: VideoInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_center_crop: bool = None,
crop_size: int = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`VideoInput`):
Videos to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the video.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the video after resizing. Shortest edge of the video is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the video. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the video.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the video.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the video by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the video.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Frame mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Frame standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the video to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size, param_name="size", default_to_square=False)
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
images = make_batched_videos(images)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# preprocess each video frame by frame
pixel_values = [
self._preprocess(
frames,
do_resize=do_resize,
size=size,
resample=resample,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
input_data_format=input_data_format,
)
for frames in images
]
data = {"pixel_values_videos": pixel_values}
return BatchFeature(data=data, tensor_type=return_tensors)
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from <path_to_diff_file.py>.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the diff. If any change should be done, please apply the change to the
# diff.py file directly.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from ... import PreTrainedModel
from ...activations import ACT2FN
from ...cache_utils import Cache
from ...image_processing_utils import select_best_resolution
from ...modeling_outputs import ModelOutput
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_llava_next_video import LlavaNextVideoConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlavaNextVideoConfig"
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (width, height).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError(
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
)
image_size = image_size.tolist()
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
"""
Calculate the number of patches after the preprocessing for images of any resolution.
Args:
image_size (`Union[torch.LongTensor, np.ndarray, Tuple[int, int]):
The size of the input image in the format (height, width). ?
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
int: the number of patches
"""
if not isinstance(grid_pinpoints, list):
raise ValueError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise ValueError(f"image_size invalid type {type(image_size)} with value {image_size}")
image_size = image_size.tolist()
best_resolution = select_best_resolution(image_size, grid_pinpoints)
height, width = best_resolution
num_patches = 0
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
num_patches += 1
# add the base patch
num_patches += 1
return num_patches
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (`torch.Tensor`):
The image tensor, assumed to be of shape (num_channels, height, width).
original_size (`tuple`):
The original size of the image (height, width).
Returns:
`torch.Tensor`: The unpadded image tensor.
"""
original_height, original_width = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
@dataclass
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->LlavaNextVideo
class LlavaNextVideoCausalLMOutputWithPast(ModelOutput):
"""
Base class for LlavaNextVideo causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class LlavaNextVideoPooler(nn.Module):
def __init__(self, config):
super().__init__()
mode = config.spatial_pool_mode
stride = config.spatial_pool_stride
out_channels = getattr(config, "spatial_pool_out_channels", config.vision_config.hidden_size)
self.image_size = config.vision_config.image_size // config.vision_config.patch_size**2
if mode == "average":
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
elif mode == "max":
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
elif mode == "conv":
self.pool = nn.Conv2d(
in_channels=config.vision_config.hidden_size,
out_channels=out_channels,
kernel_size=stride,
stride=stride,
)
else:
raise ValueError(f"Unknown pooling mode: {mode}. Has to be one of [`average`, `max`, `conv`]")
def forward(self, image_features):
ori_width = int(math.sqrt(image_features.shape[1] * self.image_size // self.image_size))
ori_height = int(ori_width * self.image_size // self.image_size)
batch_size, _, dim = image_features.shape
image_features_spatial = image_features.view(batch_size, ori_height, ori_height, dim).permute(0, 3, 1, 2)
image_features_spatial_pool = self.pool(image_features_spatial)
return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNextVideo
class LlavaNextVideoMultiModalProjector(nn.Module):
def __init__(self, config: LlavaNextVideoConfig):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
LLAVA_NEXT_VIDEO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlavaNextVideoConfig`] or [`LlavaNextVideoVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAVA_NEXT_VIDEO_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNextVideo,llava->llava_next_video
class LlavaNextVideoPreTrainedModel(PreTrainedModel):
config_class = LlavaNextVideoConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaNextVideoVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
def _init_weights(self, module):
# important: this ported version of LlavaNextVideo isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next_video should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def _supports_sdpa(self):
"""
Retrieve language_model's attribute to check whether the model supports
SDPA or not.
"""
return self.language_model._supports_sdpa
LLAVA_NEXT_VIDEO_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`LlavaNextVideoImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
[`LlavaNextVideoImageProcessor`] for processing images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
The sizes of the images in the batch, being (height, width) for each image.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
LLAVA_NEXT_VIDEO_START_DOCSTRING,
)
class LlavaNextVideoForConditionalGeneration(LlavaNextVideoPreTrainedModel):
def __init__(
self,
config: LlavaNextVideoConfig,
):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = LlavaNextVideoMultiModalProjector(config)
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(
config.text_config, attn_implementation=config._attn_implementation
)
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
self.vision_resampler = LlavaNextVideoPooler(config)
self.post_init()
@property
def padding_side(self):
return self._padding_side
@padding_side.setter
def padding_side(self, padding_side: str):
if padding_side not in ["left", "right"]:
raise ValueError(f"{padding_side} is not `left` or `right`.")
self._padding_side = padding_side
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
def get_decoder(self):
return self.language_model.get_decoder()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
def tie_weights(self):
return self.language_model.tie_weights()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_input_ids_with_image_features(
self,
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids=None,
labels=None,
image_token_index=None,
ignore_index=-100,
):
"""
Merge input_ids with with image features into final embeddings
Args:
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
All vision vectors of all images in the batch
feature_lens (`torch.LongTensor` of shape `(num_images)`):
The length of visual embeddings of each image as stacked in `image_features`
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
Token embeddings before merging with visual embeddings
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input_ids of tokens, possibly filled with image token
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
:abels need to be recalculated to support training (if provided)
image_token_index (`int`, *optional*)
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
ignore_index (`int`, *optional*)
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
Returns:
final_embedding, final_attention_mask, position_ids, final_labels
Explanation:
each image has variable length embeddings, with length specified by feature_lens
image_features is concatenation of all visual embed vectors
task: fill each <image> with the correct number of visual embeddings
Example:
X (5 patches), Y (3 patches), Z (8)
X, Y are in the same sequence (in-context learning)
if right padding
input_ids: [
a b c d e f X g h i j k Y l m
o p q r Z s t u v _ _ _ _ _ _
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
]
elif left padding
input_ids: [
a b c d e f X g h i j k Y l m
_ _ _ _ _ _ o p q r Z s t u v
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
]
Edge cases:
* If tokens are same but image token sizes are different, then cannot infer left or right padding
```python
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
prompts = [
"[INST] <image>\nWhat is shown in this image? [/INST]",
"[INST] <image>\nWhat is shown in this image? [/INST]",
]
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
chart_img has 2634 tokens, while cat_img has 2340 tokens
```
input_ids: [
a b c d X g h
i j Y k l m n
]
where X is 3 tokens while Y is 5, this mean after merge
if left-padding (batched generation)
input_ids should be: [
_ _ a b c d X X X g h
i j Y Y Y Y Y k l m n
]
elif (right padding) (training)
input_ids should be: [
a b c d X X X g h _ _
i j Y Y Y Y Y k l m n
]
"""
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
with torch.no_grad():
# ! in llava 1.6, number of patches is variable
num_images = feature_lens.size(0)
num_image_features, embed_dim = image_features.shape
if feature_lens.sum() != num_image_features:
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
batch_size = input_ids.shape[0]
_left_padding = torch.any(attention_mask[:, 0] == 0)
_right_padding = torch.any(attention_mask[:, -1] == 0)
left_padding = True
if batch_size > 1:
if _left_padding and not _right_padding:
left_padding = True
elif not _left_padding and _right_padding:
left_padding = False
elif not _left_padding and not _right_padding:
# both side is 1, so cannot tell
left_padding = self.padding_side == "left"
else:
# invalid attention_mask
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
# Whether to turn off right padding
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == image_token_index
# special_image_token_mask: [bsz, seqlen]
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# num_special_image_tokens: [bsz]
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
if total_num_special_image_tokens != num_images:
raise ValueError(
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
)
# Compute the maximum embed dimension
# max_image_feature_lens is max_feature_lens per batch
feature_lens = feature_lens.to(input_ids.device)
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
embed_sequence_lengths = (
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
)
max_embed_dim = embed_sequence_lengths.max()
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
# ! instead of special_image_token_mask * (num_image_patches - 1)
# special_image_token_mask * (num_feature_len - 1)
special_image_token_mask = special_image_token_mask.long()
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
if left_padding:
# shift right token positions so that they are ending at the same number
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_input_ids = torch.full(
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
input_ids = input_ids.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
final_labels = None
if labels is not None:
labels = labels.to(target_device)
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
with torch.no_grad():
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
if left_padding:
# exclude padding on the left
max_embed_dim = max_embed_dim.to(target_device)
val = (max_embed_dim - embed_indices) <= embed_seq_lens
else:
# exclude padding on the right
val = embed_indices < embed_seq_lens
image_to_overwrite &= val
if image_to_overwrite.sum() != num_image_features:
raise ValueError(
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. "
f"This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
def pack_image_features(self, image_features, image_sizes, image_newline=None):
"""
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
Args:
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
List of image feature tensor, each contains all the visual feature of all patches.
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
Actual image size of each images (H, W).
image_newline (`torch.Tensor` of shape `(embed_dim)`)
New line embedding vector.
Returns:
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
feature_lens (`List[int]`)
token length of each image in image_features
"""
new_image_features = []
feature_lens = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
if height * width != base_image_feature.shape[0]:
raise ValueError("The number of patches is not consistent with the image size.")
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
if image_newline is not None:
image_feature = torch.cat(
(
image_feature,
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if image_newline is not None:
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
new_image_features.append(image_feature)
feature_lens.append(image_feature.size(0))
image_features = torch.cat(new_image_features, dim=0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
return image_features, feature_lens
@add_start_docstrings_to_model_forward(LLAVA_NEXT_VIDEO_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=LlavaNextVideoCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
pixel_values_videos: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LlavaNextVideoCausalLMOutputWithPast]:
r"""
Args:
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, image_size, image_size)):
The tensors corresponding to the input videos. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`LlavaNextVideoVideoProcessor.__call__`] for details. [`LlavaProcessor`] uses
[`LlavaNextVideoVideoProcessor`] for processing videos.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> import av
>>> from transformers import AutoProcessor, LlavaNextVideoForConditionalGeneration
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> model = LlavaNextVideoForConditionalGeneration.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf", device_map="auto)
>>> processor = AutoProcessor.from_pretrained("llava-hf/LLaVA-NeXT-Video-7B-hf")
>>> prompt = "USER: <video>\nWhy is this video funny? ASSISTANT:"
>>> video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
>>> container = av.open(video_path)
>>> # sample uniformly 8 frames from the video (model was trained with 32 frames per video, but this video is short)
>>> total_frames = container.streams.video[0].frames
>>> indices = np.arange(0, total_frames, total_frames / 8).astype(int)
>>> clip = read_video_pyav(container, indices)
>>> inputs_video = processor(text=prompt, videos=clip, return_tensors="pt").to(model.device)
>>> # load an image to generate from an image
>>> prompt = "USER:<image>\nWhat is shown in this image? ASSISTANT:"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs_image = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
>>> # Generate from video
>>> generate_ids = model.generate(**inputs_video, max_length=50)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"USER:\nWhy is this video funny? ASSISTANT: The humor in this video comes from the unexpected and endearing sight of a baby wearing glasses and (...)"
>>> # Generate from image
>>> generate_ids = model.generate(**inputs_image, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"USER: \nWhat's the content of the image? ASSISTANT: The image shows a red stop sign on a pole, with a traditional Chinese archway (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
self.vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
self.vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if (pixel_values is not None or pixel_values_videos is not None) and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# Merge text and images in prefill stage
if past_key_values is None:
# First merge image tokens if there are any
if pixel_values is not None and pixel_values.size(0) > 0:
image_features = self._get_image_features(pixel_values, image_sizes)
image_features, feature_lens = self.pack_image_features(
image_features,
image_sizes,
image_newline=self.image_newline,
)
inputs_embeds = inputs_embeds.to(image_features.dtype)
inputs_embeds, attention_mask, position_ids, labels, input_ids = (
self._merge_input_ids_with_image_features(
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
image_token_index=self.config.image_token_index,
)
)
# Then merge video tokens if there are any
if pixel_values_videos is not None and pixel_values_videos.size(0) > 0:
video_features = self._get_video_features(pixel_values_videos)
video_features = [feature.flatten(0, 1) for feature in video_features]
feature_lens = [feature.size(0) for feature in video_features]
video_features = torch.cat(video_features, dim=0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=video_features.device)
inputs_embeds, attention_mask, position_ids, labels, input_ids = (
self._merge_input_ids_with_image_features(
video_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids,
labels=labels,
image_token_index=self.config.video_token_index,
)
)
# pixel_values is not None but is empty ---> text only cases
elif (pixel_values is not None and pixel_values.size(0) == 0) or (
pixel_values_videos is not None and pixel_values_videos.size(0) == 0
):
pass
# generation with cache, decoding stage
elif past_key_values is not None and (pixel_values is not None or pixel_values_videos is not None):
# Retrieve the first layer to inspect the logits and mask out the hidden states that are set to 0
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
# Get the target length
target_length = input_ids.shape[1]
past_length = first_layer_past_key_value.shape[-1]
extended_attention_mask = torch.ones(
(attention_mask.shape[0], past_length),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
# Filter out only the tokens that can be un-attended, this can happen
# if one uses Llava + Fused modules where the cache on the
# first iteration is already big enough, or if one passes custom cache
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
new_batch_index = batch_index[valid_indices]
new_non_attended_tokens = non_attended_tokens[valid_indices]
# Zero-out the places where we don't need to attend
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
shift_attention_mask = attention_mask[..., 1:]
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaNextVideoCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
pixel_values_videos=None,
image_sizes=None,
attention_mask=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
elif self.config.image_token_index in input_ids or self.config.video_token_index in input_ids:
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
# older attention values, as their corresponding values are not part of the input.
if cache_length < past_length and attention_mask is not None:
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"pixel_values_videos": pixel_values_videos,
"image_sizes": image_sizes,
}
)
return model_inputs
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._reorder_cache
def _reorder_cache(self, *args, **kwargs):
return self.language_model._reorder_cache(*args, **kwargs)
def _get_image_features(self, pixel_values, image_sizes):
# ! infer image_num_patches from image_sizes
image_num_patches = [
image_size_to_num_patches(
image_size=imsize,
grid_pinpoints=self.config.image_grid_pinpoints,
patch_size=self.config.vision_config.image_size,
)
for imsize in image_sizes
]
if pixel_values.dim() == 5:
# stacked if input is (batch_size, num_patches, num_channels, height, width)
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
pixel_values = torch.cat(_pixel_values_list, dim=0)
elif pixel_values.dim() != 4:
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_features.hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
image_features = self.multi_modal_projector(selected_image_feature)
image_features = torch.split(image_features, image_num_patches, dim=0)
return image_features
def _get_video_features(self, pixel_values):
batch_size, frames, channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * frames, channels, height, width)
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_features.hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
# Same as image features except that video has pooling layer
image_features = self.vision_resampler(selected_image_feature)
image_features = self.multi_modal_projector(image_features)
image_features = torch.split(image_features, frames, dim=0)
return image_features
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for LLaVa-NeXT-Video.
"""
from typing import TYPE_CHECKING, List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, VideoInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType, logging
if TYPE_CHECKING:
pass
logger = logging.get_logger(__name__)
class LlavaNextVideoProcessor(ProcessorMixin):
r"""
Constructs a LLaVa-NeXT-Video processor which wraps a LLaVa-NeXT image processor, LLaVa-NeXT-Video video processor and
a LLaMa tokenizer into a single processor.
[`LlavaNextVideoProcessor`] offers all the functionalities of [`LlavaNextImageProcessor`], [`LlavaNextVideoImageProcessor`] and
[`LlamaTokenizerFast`]. See the [`~LlavaNextVideoProcessor.__call__`] and [`~LlavaNextVideoProcessor.decode`] for more information.
Args:
video_processor ([`LlavaNextVideoImageProcessor`], *optional*):
The video processor is a required input.
image_processor ([`LlavaNextImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*):
Jinja chat template that will be used in tokenizer's `apply_chat_template`
"""
# video and image processor share same args, but have different processing logic
# only image processor config is saved in the hub
attributes = ["video_processor", "image_processor", "tokenizer"]
image_processor_class = "LlavaNextImageProcessor"
video_processor_class = "LlavaNextVideoImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
def __init__(self, video_processor=None, image_processor=None, tokenizer=None, chat_template=None):
super().__init__(video_processor, image_processor, tokenizer, chat_template=chat_template)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
images: ImageInput = None,
videos: VideoInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: int = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. To prepare the video(s),
this method forwards the `videos` and `kwrags` arguments to LlavaNextVideoImageProcessor's
[`~LlavaNextVideoImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is not None:
image_inputs = self.image_processor(images, return_tensors=return_tensors)
else:
image_inputs = {}
if videos is not None:
videos_inputs = self.video_processor(videos, return_tensors=return_tensors)
else:
videos_inputs = {}
text_inputs = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def default_chat_template(self):
"""
This default vicuna template formats inputs in the form of a chat history. For each message in the chat history:
* the template will output the role of the speaker followed by the content of the message.
* content is a list of strings and images.
* If the content element is an image, the template will output a sequence of <image> or <video> tokens
Example:
```python
messages = [{
"role": "user",
"content": [
{"type": "text", "text": "What’s the content of this video?"},
{"type": "video"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This picture shows a red stop sign."},]
}]
```
Will create outputs like:
```
USER: <video>\nWhat is the content of this video?
ASSITANT: This picture shows a red stop sign
```
"""
# fmt: off
return (
"{% for message in messages %}"
"{% if message['role'] == 'system' %}"
"{{ message['content'][0]['text'] }}"
"{% else %}"
"{{ message['role'].upper() + ': '}}"
"{% endif %}"
"{# Render all images first #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}"
"{{ '<image>\n' }}"
"{% endfor %}"
"{# Render all videos next #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'video') %}"
"{{ '<video>\n' }}"
"{% endfor %}"
"{# Render all text finally #}"
"{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}"
"{{ content['text'] + ' '}}"
"{% endfor %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ 'ASSISTANT:' }}"
"{% endif %}"
)
# fmt: on
......@@ -5140,6 +5140,20 @@ class LlavaNextPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
class LlavaNextVideoForConditionalGeneration(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LlavaNextVideoPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class LongformerForMaskedLM(metaclass=DummyObject):
_backends = ["torch"]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment