Unverified Commit e66984f9 authored by Younes Belkada's avatar Younes Belkada Committed by GitHub
Browse files

[`FA-2`] Add fa2 support for `from_config` (#26914)

* add fa2 support for from_config

* Update test_modeling_common.py
parent f31af392
......@@ -1173,14 +1173,20 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
Args:
torch_dtype (`torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype.
use_flash_attention_2 (`bool`, *optional*):
Whether to load the model with Flash Attention 2 modules.
"""
torch_dtype = kwargs.pop("torch_dtype", None)
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
# override default dtype if needed
dtype_orig = None
if torch_dtype is not None:
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
if use_flash_attention_2:
config = cls._check_and_enable_flash_attn_2(config, torch_dtype)
if is_deepspeed_zero3_enabled():
import deepspeed
......
......@@ -33,6 +33,7 @@ from pytest import mark
import transformers
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSequenceClassification,
PretrainedConfig,
is_torch_available,
......@@ -3269,6 +3270,53 @@ class ModelTesterMixin:
# Check models are equal
self.assertTrue(check_models_equal(flax_model_1, flax_model_2))
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_from_config(self):
import torch
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
return
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# TODO: to change it in the future with other relevant auto classes
fa2_model = AutoModelForCausalLM.from_config(
config, use_flash_attention_2=True, torch_dtype=torch.bfloat16
).to(torch_device)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)
fa2_correctly_converted = False
for _, module in fa2_model.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break
self.assertTrue(fa2_correctly_converted)
_ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)
with tempfile.TemporaryDirectory() as tmpdirname:
fa2_model.save_pretrained(tmpdirname)
model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)
self.assertFalse(getattr(model_from_pretrained.config, "_flash_attn_2_enabled", False))
fa2_correctly_converted = False
for _, module in model_from_pretrained.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break
self.assertFalse(fa2_correctly_converted)
global_rng = random.Random()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment