"docs/source/en/tasks/sequence_classification.md" did not exist on "ba2a5f13f777e828cbabbee213dcc841dfef3d05"
Unverified Commit e5eb3e22 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix `RobertaPreLayerNorm` doctest (#21337)



* add mask="<mask>"

* update

* update

* fix
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 36b668fa
...@@ -1075,6 +1075,9 @@ class RobertaPreLayerNormForMaskedLM(RobertaPreLayerNormPreTrainedModel): ...@@ -1075,6 +1075,9 @@ class RobertaPreLayerNormForMaskedLM(RobertaPreLayerNormPreTrainedModel):
checkpoint=_CHECKPOINT_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput, output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC, config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.69,
) )
# Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM.forward with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
def forward( def forward(
......
...@@ -1067,11 +1067,11 @@ class TFRobertaPreLayerNormLMHead(tf.keras.layers.Layer): ...@@ -1067,11 +1067,11 @@ class TFRobertaPreLayerNormLMHead(tf.keras.layers.Layer):
@add_start_docstrings( @add_start_docstrings(
"""RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING """RoBERTa-PreLayerNorm Model with a `language modeling` head on top.""", ROBERTA_PRELAYERNORM_START_DOCSTRING
) )
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFMaskedLanguageModelingLoss): class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"] _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.__init__ with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
def __init__(self, config, *inputs, **kwargs): def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs) super().__init__(config, *inputs, **kwargs)
...@@ -1095,8 +1095,9 @@ class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFM ...@@ -1095,8 +1095,9 @@ class TFRobertaPreLayerNormForMaskedLM(TFRobertaPreLayerNormPreTrainedModel, TFM
config_class=_CONFIG_FOR_DOC, config_class=_CONFIG_FOR_DOC,
mask="<mask>", mask="<mask>",
expected_output="' Paris'", expected_output="' Paris'",
expected_loss=0.1, expected_loss=0.69,
) )
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForMaskedLM.call with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta->roberta_prelayernorm
def call( def call(
self, self,
input_ids: Optional[TFModelInputType] = None, input_ids: Optional[TFModelInputType] = None,
...@@ -1354,8 +1355,6 @@ class TFRobertaPreLayerNormForSequenceClassification( ...@@ -1354,8 +1355,6 @@ class TFRobertaPreLayerNormForSequenceClassification(
checkpoint=_CHECKPOINT_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput, output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC, config_class=_CONFIG_FOR_DOC,
expected_output="'optimism'",
expected_loss=0.08,
) )
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification.call with roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForSequenceClassification.call with roberta->roberta_prelayernorm
def call( def call(
...@@ -1570,8 +1569,6 @@ class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTraine ...@@ -1570,8 +1569,6 @@ class TFRobertaPreLayerNormForTokenClassification(TFRobertaPreLayerNormPreTraine
checkpoint=_CHECKPOINT_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput, output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC, config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
) )
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification.call with roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForTokenClassification.call with roberta->roberta_prelayernorm
def call( def call(
...@@ -1658,8 +1655,6 @@ class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedM ...@@ -1658,8 +1655,6 @@ class TFRobertaPreLayerNormForQuestionAnswering(TFRobertaPreLayerNormPreTrainedM
checkpoint=_CHECKPOINT_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput, output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC, config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.86,
) )
# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering.call with roberta->roberta_prelayernorm # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaForQuestionAnswering.call with roberta->roberta_prelayernorm
def call( def call(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment