Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
e513c16e
Unverified
Commit
e513c16e
authored
Dec 06, 2021
by
Sylvain Gugger
Committed by
GitHub
Dec 06, 2021
Browse files
Fix syntax for class references (#14644)
parent
e9688875
Changes
11
Show whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
25 additions
and
25 deletions
+25
-25
src/transformers/generation_flax_utils.py
src/transformers/generation_flax_utils.py
+4
-4
src/transformers/generation_utils.py
src/transformers/generation_utils.py
+4
-4
src/transformers/modeling_tf_utils.py
src/transformers/modeling_tf_utils.py
+1
-1
src/transformers/models/tapas/tokenization_tapas.py
src/transformers/models/tapas/tokenization_tapas.py
+1
-1
src/transformers/pipelines/__init__.py
src/transformers/pipelines/__init__.py
+4
-4
src/transformers/pipelines/audio_classification.py
src/transformers/pipelines/audio_classification.py
+1
-1
src/transformers/pipelines/automatic_speech_recognition.py
src/transformers/pipelines/automatic_speech_recognition.py
+4
-4
src/transformers/pipelines/base.py
src/transformers/pipelines/base.py
+2
-2
src/transformers/pipelines/feature_extraction.py
src/transformers/pipelines/feature_extraction.py
+2
-2
src/transformers/pipelines/zero_shot_classification.py
src/transformers/pipelines/zero_shot_classification.py
+1
-1
src/transformers/trainer.py
src/transformers/trainer.py
+1
-1
No files found.
src/transformers/generation_flax_utils.py
View file @
e513c16e
...
...
@@ -326,8 +326,8 @@ class FlaxGenerationMixin:
self
,
top_k
:
int
=
None
,
top_p
:
float
=
None
,
temperature
:
float
=
None
)
->
FlaxLogitsProcessorList
:
"""
This class returns a :
obj
:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:
obj
:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
This class returns a :
class
:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:
class
:`~transformers.FlaxLogitsWarper` instances used for multinomial sampling.
"""
# init warp parameters
...
...
@@ -358,8 +358,8 @@ class FlaxGenerationMixin:
forced_eos_token_id
:
int
,
)
->
FlaxLogitsProcessorList
:
"""
This class returns a :
obj
:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:
obj
:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
This class returns a :
class
:`~transformers.FlaxLogitsProcessorList` list object that contains all relevant
:
class
:`~transformers.FlaxLogitsProcessor` instances used to modify the scores of the language model head.
"""
processors
=
FlaxLogitsProcessorList
()
...
...
src/transformers/generation_utils.py
View file @
e513c16e
...
...
@@ -535,8 +535,8 @@ class GenerationMixin:
self
,
top_k
:
int
=
None
,
top_p
:
float
=
None
,
temperature
:
float
=
None
,
num_beams
:
int
=
None
)
->
LogitsProcessorList
:
"""
This class returns a :
obj
:`~transformers.LogitsProcessorList` list object that contains all relevant
:
obj
:`~transformers.LogitsWarper` instances used for multinomial sampling.
This class returns a :
class
:`~transformers.LogitsProcessorList` list object that contains all relevant
:
class
:`~transformers.LogitsWarper` instances used for multinomial sampling.
"""
# init warp parameters
...
...
@@ -575,8 +575,8 @@ class GenerationMixin:
remove_invalid_values
:
bool
,
)
->
LogitsProcessorList
:
"""
This class returns a :
obj
:`~transformers.LogitsProcessorList` list object that contains all relevant
:
obj
:`~transformers.LogitsProcessor` instances used to modify the scores of the language model head.
This class returns a :
class
:`~transformers.LogitsProcessorList` list object that contains all relevant
:
class
:`~transformers.LogitsProcessor` instances used to modify the scores of the language model head.
"""
processors
=
LogitsProcessorList
()
...
...
src/transformers/modeling_tf_utils.py
View file @
e513c16e
...
...
@@ -737,7 +737,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
Prepare the output of the saved model. Each model must implement this function.
Args:
output (:
obj
:`~transformers.TFBaseModelOutput`):
output (:
class
:`~transformers.TFBaseModelOutput`):
The output returned by the model.
"""
raise
NotImplementedError
...
...
src/transformers/models/tapas/tokenization_tapas.py
View file @
e513c16e
...
...
@@ -1277,7 +1277,7 @@ class TapasTokenizer(PreTrainedTokenizer):
Total number of table columns
max_length (:obj:`int`):
Total maximum length.
truncation_strategy (:obj:`str` or :
obj
:`~transformers.TapasTruncationStrategy`):
truncation_strategy (:obj:`str` or :
class
:`~transformers.TapasTruncationStrategy`):
Truncation strategy to use. Seeing as this method should only be called when truncating, the only
available strategy is the :obj:`"drop_rows_to_fit"` strategy.
...
...
src/transformers/pipelines/__init__.py
View file @
e513c16e
...
...
@@ -372,13 +372,13 @@ def pipeline(
- :obj:`"summarization"`: will return a :class:`~transformers.SummarizationPipeline`:.
- :obj:`"zero-shot-classification"`: will return a :class:`~transformers.ZeroShotClassificationPipeline`:.
model (:obj:`str` or :
obj
:`~transformers.PreTrainedModel` or :
obj
:`~transformers.TFPreTrainedModel`, `optional`):
model (:obj:`str` or :
class
:`~transformers.PreTrainedModel` or :
class
:`~transformers.TFPreTrainedModel`, `optional`):
The model that will be used by the pipeline to make predictions. This can be a model identifier or an
actual instance of a pretrained model inheriting from :class:`~transformers.PreTrainedModel` (for PyTorch)
or :class:`~transformers.TFPreTrainedModel` (for TensorFlow).
If not provided, the default for the :obj:`task` will be loaded.
config (:obj:`str` or :
obj
:`~transformers.PretrainedConfig`, `optional`):
config (:obj:`str` or :
class
:`~transformers.PretrainedConfig`, `optional`):
The configuration that will be used by the pipeline to instantiate the model. This can be a model
identifier or an actual pretrained model configuration inheriting from
:class:`~transformers.PretrainedConfig`.
...
...
@@ -386,7 +386,7 @@ def pipeline(
If not provided, the default configuration file for the requested model will be used. That means that if
:obj:`model` is given, its default configuration will be used. However, if :obj:`model` is not supplied,
this :obj:`task`'s default model's config is used instead.
tokenizer (:obj:`str` or :
obj
:`~transformers.PreTrainedTokenizer`, `optional`):
tokenizer (:obj:`str` or :
class
:`~transformers.PreTrainedTokenizer`, `optional`):
The tokenizer that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained tokenizer inheriting from :class:`~transformers.PreTrainedTokenizer`.
...
...
@@ -394,7 +394,7 @@ def pipeline(
:obj:`model` is not specified or not a string, then the default tokenizer for :obj:`config` is loaded (if
it is a string). However, if :obj:`config` is also not given or not a string, then the default tokenizer
for the given :obj:`task` will be loaded.
feature_extractor (:obj:`str` or :
obj
:`~transformers.PreTrainedFeatureExtractor`, `optional`):
feature_extractor (:obj:`str` or :
class
:`~transformers.PreTrainedFeatureExtractor`, `optional`):
The feature extractor that will be used by the pipeline to encode data for the model. This can be a model
identifier or an actual pretrained feature extractor inheriting from
:class:`~transformers.PreTrainedFeatureExtractor`.
...
...
src/transformers/pipelines/audio_classification.py
View file @
e513c16e
...
...
@@ -93,7 +93,7 @@ class AudioClassificationPipeline(Pipeline):
**
kwargs
,
):
"""
Classify the sequence(s) given as inputs. See the :
obj
:`~transformers.AutomaticSpeechRecognitionPipeline`
Classify the sequence(s) given as inputs. See the :
class
:`~transformers.AutomaticSpeechRecognitionPipeline`
documentation for more information.
Args:
...
...
src/transformers/pipelines/automatic_speech_recognition.py
View file @
e513c16e
...
...
@@ -77,13 +77,13 @@ class AutomaticSpeechRecognitionPipeline(Pipeline):
def
__init__
(
self
,
feature_extractor
:
Union
[
"SequenceFeatureExtractor"
,
str
],
*
args
,
**
kwargs
):
"""
Arguments:
feature_extractor (:
obj
:`~transformers.SequenceFeatureExtractor`):
feature_extractor (:
class
:`~transformers.SequenceFeatureExtractor`):
The feature extractor that will be used by the pipeline to encode waveform for the model.
model (:
obj
:`~transformers.PreTrainedModel` or :
obj
:`~transformers.TFPreTrainedModel`):
model (:
class
:`~transformers.PreTrainedModel` or :
class
:`~transformers.TFPreTrainedModel`):
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting
from :class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel`
for TensorFlow.
tokenizer (:
obj
:`~transformers.PreTrainedTokenizer`):
tokenizer (:
class
:`~transformers.PreTrainedTokenizer`):
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
:class:`~transformers.PreTrainedTokenizer`.
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
...
...
@@ -114,7 +114,7 @@ class AutomaticSpeechRecognitionPipeline(Pipeline):
**
kwargs
,
):
"""
Classify the sequence(s) given as inputs. See the :
obj
:`~transformers.AutomaticSpeechRecognitionPipeline`
Classify the sequence(s) given as inputs. See the :
class
:`~transformers.AutomaticSpeechRecognitionPipeline`
documentation for more information.
Args:
...
...
src/transformers/pipelines/base.py
View file @
e513c16e
...
...
@@ -644,11 +644,11 @@ class _ScikitCompat(ABC):
PIPELINE_INIT_ARGS
=
r
"""
Arguments:
model (:
obj
:`~transformers.PreTrainedModel` or :
obj
:`~transformers.TFPreTrainedModel`):
model (:
class
:`~transformers.PreTrainedModel` or :
class
:`~transformers.TFPreTrainedModel`):
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
TensorFlow.
tokenizer (:
obj
:`~transformers.PreTrainedTokenizer`):
tokenizer (:
class
:`~transformers.PreTrainedTokenizer`):
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
:class:`~transformers.PreTrainedTokenizer`.
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
...
...
src/transformers/pipelines/feature_extraction.py
View file @
e513c16e
...
...
@@ -16,11 +16,11 @@ class FeatureExtractionPipeline(Pipeline):
`huggingface.co/models <https://huggingface.co/models>`__.
Arguments:
model (:
obj
:`~transformers.PreTrainedModel` or :
obj
:`~transformers.TFPreTrainedModel`):
model (:
class
:`~transformers.PreTrainedModel` or :
class
:`~transformers.TFPreTrainedModel`):
The model that will be used by the pipeline to make predictions. This needs to be a model inheriting from
:class:`~transformers.PreTrainedModel` for PyTorch and :class:`~transformers.TFPreTrainedModel` for
TensorFlow.
tokenizer (:
obj
:`~transformers.PreTrainedTokenizer`):
tokenizer (:
class
:`~transformers.PreTrainedTokenizer`):
The tokenizer that will be used by the pipeline to encode data for the model. This object inherits from
:class:`~transformers.PreTrainedTokenizer`.
modelcard (:obj:`str` or :class:`~transformers.ModelCard`, `optional`):
...
...
src/transformers/pipelines/zero_shot_classification.py
View file @
e513c16e
...
...
@@ -154,7 +154,7 @@ class ZeroShotClassificationPipeline(Pipeline):
**
kwargs
,
):
"""
Classify the sequence(s) given as inputs. See the :
obj
:`~transformers.ZeroShotClassificationPipeline`
Classify the sequence(s) given as inputs. See the :
class
:`~transformers.ZeroShotClassificationPipeline`
documentation for more information.
Args:
...
...
src/transformers/trainer.py
View file @
e513c16e
...
...
@@ -239,7 +239,7 @@ class Trainer:
compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
The function that will be used to compute metrics at evaluation. Must take a
:class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
callbacks (List of :
obj
:`~transformers.TrainerCallback`, `optional`):
callbacks (List of :
class
:`~transformers.TrainerCallback`, `optional`):
A list of callbacks to customize the training loop. Will add those to the list of default callbacks
detailed in :doc:`here <callback>`.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment