Unverified Commit e4d56e81 authored by Ethan Joseph's avatar Ethan Joseph Committed by GitHub
Browse files

add return types for tf gptj, xlm, and xlnet (#19638)

parent 2af36f95
......@@ -387,7 +387,7 @@ class TFGPTJMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
):
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
......@@ -684,7 +684,7 @@ class TFGPTJModel(TFGPTJPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
r"""
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
......@@ -789,7 +789,7 @@ class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
......@@ -893,7 +893,7 @@ class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassific
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
r"""
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......@@ -1016,7 +1016,7 @@ class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss)
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
):
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
......
......@@ -362,7 +362,7 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
output_hidden_states=None,
return_dict=None,
training=False,
):
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
# removed: src_enc=None, src_len=None
if input_ids is not None and inputs_embeds is not None:
......@@ -721,7 +721,7 @@ class TFXLMModel(TFXLMPreTrainedModel):
output_hidden_states=None,
return_dict=None,
training=False,
):
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
......@@ -858,7 +858,7 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
):
) -> Union[TFXLMWithLMHeadModelOutput, Tuple[tf.Tensor]]:
transformer_outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
......@@ -931,7 +931,7 @@ class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificat
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
......@@ -1038,7 +1038,7 @@ class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss):
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
......@@ -1162,7 +1162,7 @@ class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLos
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
......@@ -1248,7 +1248,7 @@ class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringL
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: bool = False,
):
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
......
......@@ -1166,7 +1166,7 @@ class TFXLNetModel(TFXLNetPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
):
) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]:
outputs = self.transformer(
input_ids=input_ids,
attention_mask=attention_mask,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment