"docs/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "62f5522ffe3fdee03f40b8fa077c9f77bbfc4169"
Commit e468192e authored by thomwolf's avatar thomwolf
Browse files

Merge branch 'pytorch-transformers' into xlnet

parents 9dd2c860 4ce237c8
......@@ -33,10 +33,10 @@ from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling_xlnet import BertForQuestionAnswering
from pytorch_pretrained_bert.tokenization_xlnet import XLNetTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
from pytorch_transformers.modeling_xlnet import BertForQuestionAnswering
from pytorch_transformers.tokenization_xlnet import XLNetTokenizer
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
......
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import unittest
import argparse
import logging
try:
# python 3.4+ can use builtin unittest.mock instead of mock package
from unittest.mock import patch
except ImportError:
from mock import patch
import run_glue
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument('-f')
args = parser.parse_args()
return args.f
class ExamplesTests(unittest.TestCase):
def test_run_glue(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
testargs = ["run_glue.py", "--data_dir=./examples/tests_samples/MRPC/",
"--task_name=mrpc", "--do_train", "--do_eval", "--output_dir=./examples/tests_samples/temp_dir",
"--train_batch_size=4", "--eval_batch_size=2", "--num_train_epochs=2.0", "--overwrite_output_dir"]
model_name = "--model_name=bert-base-uncased"
with patch.object(sys, 'argv', testargs + [model_name]):
result = run_glue.main()
for value in result.values():
self.assertGreaterEqual(value, 0.75)
if __name__ == "__main__":
unittest.main()
*.*
cache*
temp*
!*.tsv
!.gitignore
\ No newline at end of file
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
Quality #1 ID #2 ID #1 String #2 String
1 1355540 1355592 He said the foodservice pie business doesn 't fit the company 's long-term growth strategy . " The foodservice pie business does not fit our long-term growth strategy .
0 2029631 2029565 Magnarelli said Racicot hated the Iraqi regime and looked forward to using his long years of training in the war . His wife said he was " 100 percent behind George Bush " and looked forward to using his years of training in the war .
0 487993 487952 The dollar was at 116.92 yen against the yen , flat on the session , and at 1.2891 against the Swiss franc , also flat . The dollar was at 116.78 yen JPY = , virtually flat on the session , and at 1.2871 against the Swiss franc CHF = , down 0.1 percent .
1 1989515 1989458 The AFL-CIO is waiting until October to decide if it will endorse a candidate . The AFL-CIO announced Wednesday that it will decide in October whether to endorse a candidate before the primaries .
0 1783137 1782659 No dates have been set for the civil or the criminal trial . No dates have been set for the criminal or civil cases , but Shanley has pleaded not guilty .
1 3039165 3039036 Wal-Mart said it would check all of its million-plus domestic workers to ensure they were legally employed . It has also said it would review all of its domestic employees more than 1 million to ensure they have legal status .
......@@ -396,7 +396,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
mask_padding_with_zero=True):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (BERT pattern): [CLS] + A + [SEP] + B + [SEP]
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
......@@ -489,8 +489,7 @@ def convert_examples_to_features(examples, label_list, max_seq_length,
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
......@@ -583,6 +582,7 @@ processors = {
output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
......
......@@ -24,7 +24,7 @@ import math
import collections
from io import open
from pytorch_pretrained_bert.tokenization_bert import BasicTokenizer, whitespace_tokenize
from pytorch_transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
logger = logging.getLogger(__name__)
......
from pytorch_pretrained_bert.tokenization_bert import BertTokenizer
from pytorch_pretrained_bert.modeling_bert import (
from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_transformers.modeling_bert import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
......@@ -86,7 +86,7 @@ def bertTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
......@@ -106,7 +106,7 @@ def bertModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -115,7 +115,7 @@ def bertModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertModel', 'bert-base-cased')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
......@@ -135,7 +135,7 @@ def bertForNextSentencePrediction(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -144,7 +144,7 @@ def bertForNextSentencePrediction(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForNextSentencePrediction
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model.eval()
# Predict the next sentence classification logits
>>> with torch.no_grad():
......@@ -165,7 +165,7 @@ def bertForPreTraining(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -173,7 +173,7 @@ def bertForPreTraining(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForPreTraining
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForPreTraining', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForPreTraining', 'bert-base-cased')
>>> masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
......@@ -189,7 +189,7 @@ def bertForMaskedLM(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -200,7 +200,7 @@ def bertForMaskedLM(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForMaskedLM
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMaskedLM', 'bert-base-cased')
>>> model.eval()
# Predict all tokens
>>> with torch.no_grad():
......@@ -231,7 +231,7 @@ def bertForSequenceClassification(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -240,7 +240,7 @@ def bertForSequenceClassification(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForSequenceClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the sequence classification logits
>>> with torch.no_grad():
......@@ -266,7 +266,7 @@ def bertForMultipleChoice(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -275,7 +275,7 @@ def bertForMultipleChoice(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
>>> segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
# Load bertForMultipleChoice
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model.eval()
# Predict the multiple choice logits
>>> with torch.no_grad():
......@@ -299,7 +299,7 @@ def bertForQuestionAnswering(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -308,7 +308,7 @@ def bertForQuestionAnswering(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForQuestionAnswering
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model.eval()
# Predict the start and end positions logits
>>> with torch.no_grad():
......@@ -338,7 +338,7 @@ def bertForTokenClassification(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -347,7 +347,7 @@ def bertForTokenClassification(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForTokenClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the token classification logits
>>> with torch.no_grad():
......
from pytorch_pretrained_bert.tokenization_gpt2 import GPT2Tokenizer
from pytorch_pretrained_bert.modeling_gpt2 import (
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
from pytorch_transformers.modeling_gpt2 import (
GPT2Model,
GPT2LMHeadModel,
GPT2DoubleHeadsModel
......@@ -53,7 +53,7 @@ def gpt2Tokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -72,7 +72,7 @@ def gpt2Model(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -83,7 +83,7 @@ def gpt2Model(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2Model
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Model', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Model', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -105,7 +105,7 @@ def gpt2LMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -116,7 +116,7 @@ def gpt2LMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2LMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2LMHeadModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2LMHeadModel', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -144,7 +144,7 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -157,7 +157,7 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
>>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load gpt2DoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2DoubleHeadsModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2DoubleHeadsModel', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer
from pytorch_pretrained_bert.modeling_openai import (
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer
from pytorch_transformers.modeling_openai import (
OpenAIGPTModel,
OpenAIGPTLMHeadModel,
OpenAIGPTDoubleHeadsModel
......@@ -77,7 +77,7 @@ def openAIGPTTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -98,7 +98,7 @@ def openAIGPTModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -107,7 +107,7 @@ def openAIGPTModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -127,7 +127,7 @@ def openAIGPTLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -136,7 +136,7 @@ def openAIGPTLMHeadModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTLMHeadModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTLMHeadModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -162,7 +162,7 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -175,7 +175,7 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
>>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load openAIGPTDoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_pretrained_bert.modeling_transfo_xl import (
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_transformers.modeling_transfo_xl import (
TransfoXLModel,
TransfoXLLMHeadModel
)
......@@ -46,7 +46,7 @@ def transformerXLTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> text = "Who was Jim Henson ?"
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
......@@ -64,7 +64,7 @@ def transformerXLModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -77,7 +77,7 @@ def transformerXLModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -99,7 +99,7 @@ def transformerXLLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -112,7 +112,7 @@ def transformerXLLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_xlm import XLMTokenizer
from pytorch_pretrained_bert.modeling_xlm import (
from pytorch_transformers.tokenization_xlm import XLMTokenizer
from pytorch_transformers.modeling_xlm import (
XLMConfig,
XLMModel,
XLMWithLMHeadModel,
......@@ -18,7 +18,7 @@ xlm_start_docstring = """
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -77,7 +77,7 @@ def xlmTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -91,7 +91,7 @@ def xlmTokenizer(*args, **kwargs):
def xlmModel(*args, **kwargs):
"""
# Load xlmModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmModel', 'xlm-mlm-en-2048')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -116,7 +116,7 @@ def xlmLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -143,7 +143,7 @@ def xlmLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -156,7 +156,7 @@ def xlmLMHeadModel(*args, **kwargs):
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# >>> model.eval()
# # Predict sequence classes logits
......
from pytorch_pretrained_bert.tokenization_xlnet import XLNetTokenizer
from pytorch_pretrained_bert.modeling_xlnet import (
from pytorch_transformers.tokenization_xlnet import XLNetTokenizer
from pytorch_transformers.modeling_xlnet import (
XLNetConfig,
XLNetModel,
XLNetLMHeadModel,
......@@ -54,7 +54,7 @@ def xlnetTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -73,7 +73,7 @@ def xlnetModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -84,7 +84,7 @@ def xlnetModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetModel', 'xlnet-large-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -107,7 +107,7 @@ def xlnetLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -118,7 +118,7 @@ def xlnetLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -145,7 +145,7 @@ def xlnetLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -158,7 +158,7 @@ def xlnetLMHeadModel(*args, **kwargs):
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# >>> model.eval()
# # Predict sequence classes logits
......
......@@ -78,7 +78,7 @@
"import importlib.util\n",
"import sys\n",
"import tensorflow as tf\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"\n",
"def del_all_flags(FLAGS):\n",
" flags_dict = FLAGS._flags() \n",
......@@ -3997,9 +3997,9 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling_bert - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling_bert - extracting archive file /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_pretrained_bert.modeling_bert - Model config {\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - extracting archive file /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
......
......@@ -342,7 +342,7 @@
"outputs": [],
"source": [
"import extract_features\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"from extract_features import *"
]
},
......@@ -375,8 +375,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling_bert - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling_bert - Model config {\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
......
__version__ = "0.6.2"
__version__ = "0.7.0"
from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer
from .tokenization_utils import (PreTrainedTokenizer, clean_up_tokenization)
from .modeling_bert import (BertConfig, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForMultipleChoice,
BertForTokenClassification, BertForQuestionAnswering,
load_tf_weights_in_bert)
load_tf_weights_in_bert, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP)
from .modeling_openai import (OpenAIGPTConfig, OpenAIGPTModel,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel,
load_tf_weights_in_openai_gpt)
load_tf_weights_in_openai_gpt, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
load_tf_weights_in_transfo_xl, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_gpt2 import (GPT2Config, GPT2Model,
GPT2LMHeadModel, GPT2DoubleHeadsModel,
load_tf_weights_in_gpt2)
load_tf_weights_in_gpt2, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlnet import (XLNetConfig,
XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel,
XLNetForSequenceClassification, XLNetForQuestionAnswering,
load_tf_weights_in_xlnet)
load_tf_weights_in_xlnet, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlm import (XLMConfig, XLMModel,
XLMWithLMHeadModel, XLMForSequenceClassification,
XLMForQuestionAnswering)
XLMForQuestionAnswering, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
from .optimization import BertAdam
from .optimization_openai import OpenAIAdam
from .file_utils import (PYTORCH_PRETRAINED_BERT_CACHE, cached_path)
from .model_utils import (WEIGHTS_NAME, CONFIG_NAME, TF_WEIGHTS_NAME,
PretrainedConfig, PreTrainedModel, prune_layer, Conv1D)
......@@ -4,24 +4,24 @@ def main():
if (len(sys.argv) < 4 or len(sys.argv) > 6) or sys.argv[1] not in ["bert", "gpt", "transfo_xl", "gpt2", "xlnet"]:
print(
"Should be used as one of: \n"
">> `pytorch_pretrained_bert bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_pretrained_bert gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_pretrained_bert transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_pretrained_bert gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]` or \n"
">> `pytorch_pretrained_bert xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
">> `pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_transformers transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]` or \n"
">> `pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
else:
if sys.argv[1] == "bert":
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
print("Should be used as `pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
......@@ -31,7 +31,7 @@ def main():
from .convert_openai_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
print("Should be used as `pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
else:
OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -46,13 +46,13 @@ def main():
try:
from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `pytorch_transformers transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
if 'ckpt' in sys.argv[2].lower():
TF_CHECKPOINT = sys.argv[2]
......@@ -70,14 +70,14 @@ def main():
try:
from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -90,14 +90,14 @@ def main():
try:
from .convert_xlnet_checkpoint_to_pytorch import convert_xlnet_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 5 or len(sys.argv) > 6:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
print("Should be used as `pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
else:
TF_CHECKPOINT = sys.argv[2]
TF_CONFIG = sys.argv[3]
......
......@@ -21,7 +21,7 @@ from io import open
import torch
from pytorch_pretrained_bert.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
from pytorch_transformers.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
GPT2Config,
GPT2Model,
load_tf_weights_in_gpt2)
......
......@@ -21,7 +21,7 @@ from io import open
import torch
from pytorch_pretrained_bert.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
from pytorch_transformers.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
OpenAIGPTConfig,
OpenAIGPTModel,
load_tf_weights_in_openai_gpt)
......
......@@ -25,7 +25,7 @@ import tensorflow as tf
import torch
import numpy as np
from pytorch_pretrained_bert.modeling_bert import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from pytorch_transformers.modeling_bert import BertConfig, BertForPreTraining, load_tf_weights_in_bert
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment