"examples/vscode:/vscode.git/clone" did not exist on "29e4597950e9de8cc32321e4286f1a61894b46d4"
Unverified Commit e3cc4487 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix CIs for PyTorch 1.13 (#20686)



* fix 1

* fix 2

* fix 3

* fix 4
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent bcc069dd
...@@ -1538,7 +1538,7 @@ class BartForSequenceClassification(BartPretrainedModel): ...@@ -1538,7 +1538,7 @@ class BartForSequenceClassification(BartPretrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -2738,7 +2738,7 @@ class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel): ...@@ -2738,7 +2738,7 @@ class BigBirdPegasusForSequenceClassification(BigBirdPegasusPreTrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -1057,7 +1057,7 @@ class BloomForSequenceClassification(BloomPreTrainedModel): ...@@ -1057,7 +1057,7 @@ class BloomForSequenceClassification(BloomPreTrainedModel):
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
logger.warning( logger.warning(
......
...@@ -734,7 +734,8 @@ class CLIPTextTransformer(nn.Module): ...@@ -734,7 +734,8 @@ class CLIPTextTransformer(nn.Module):
# take features from the eot embedding (eot_token is the highest number in each sequence) # take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[ pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1) torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
] ]
if not return_dict: if not return_dict:
......
...@@ -746,7 +746,8 @@ class CLIPSegTextTransformer(nn.Module): ...@@ -746,7 +746,8 @@ class CLIPSegTextTransformer(nn.Module):
# take features from the eot embedding (eot_token is the highest number in each sequence) # take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[ pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1) torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
] ]
if not return_dict: if not return_dict:
......
...@@ -1401,7 +1401,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel): ...@@ -1401,7 +1401,7 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
logger.warning( logger.warning(
......
...@@ -883,7 +883,7 @@ class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel): ...@@ -883,7 +883,7 @@ class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel):
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
logger.warning( logger.warning(
......
...@@ -969,7 +969,7 @@ class GPTJForSequenceClassification(GPTJPreTrainedModel): ...@@ -969,7 +969,7 @@ class GPTJForSequenceClassification(GPTJPreTrainedModel):
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
logger.warning( logger.warning(
......
...@@ -1134,7 +1134,8 @@ class GroupViTTextTransformer(nn.Module): ...@@ -1134,7 +1134,8 @@ class GroupViTTextTransformer(nn.Module):
# take features from the eot embedding (eot_token is the highest number in each sequence) # take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[ pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=input_ids.device), input_ids.to(torch.int).argmax(dim=-1) torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
] ]
if not return_dict: if not return_dict:
......
...@@ -2608,7 +2608,7 @@ class LEDForSequenceClassification(LEDPreTrainedModel): ...@@ -2608,7 +2608,7 @@ class LEDForSequenceClassification(LEDPreTrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -1525,7 +1525,7 @@ class MBartForSequenceClassification(MBartPreTrainedModel): ...@@ -1525,7 +1525,7 @@ class MBartForSequenceClassification(MBartPreTrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -1674,7 +1674,7 @@ class MvpForSequenceClassification(MvpPreTrainedModel): ...@@ -1674,7 +1674,7 @@ class MvpForSequenceClassification(MvpPreTrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -1069,7 +1069,7 @@ class OPTForSequenceClassification(OPTPreTrainedModel): ...@@ -1069,7 +1069,7 @@ class OPTForSequenceClassification(OPTPreTrainedModel):
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
logger.warning( logger.warning(
......
...@@ -1496,7 +1496,7 @@ class PLBartForSequenceClassification(PLBartPreTrainedModel): ...@@ -1496,7 +1496,7 @@ class PLBartForSequenceClassification(PLBartPreTrainedModel):
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
...@@ -2982,7 +2982,7 @@ class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutt ...@@ -2982,7 +2982,7 @@ class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutt
) )
hidden_states = outputs[0] # last hidden state hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id) eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.") raise ValueError("All examples must have the same number of <eos> tokens.")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment