Unverified Commit e3645fd2 authored by Minh Chien Vu's avatar Minh Chien Vu Committed by GitHub
Browse files

Change unpacking of TF mobilebert inputs to use decorator (#16110)



* Change unpacking of TF mobilebert inputs to use decorator

* Move unpack_inputs as the top decorator

* make fixup
Co-authored-by: default avatarChienVM <chien_vm@detomo.co.jp>
parent 5dbf36bd
...@@ -49,8 +49,8 @@ from ...modeling_tf_utils import ( ...@@ -49,8 +49,8 @@ from ...modeling_tf_utils import (
TFSequenceClassificationLoss, TFSequenceClassificationLoss,
TFTokenClassificationLoss, TFTokenClassificationLoss,
get_initializer, get_initializer,
input_processing,
keras_serializable, keras_serializable,
unpack_inputs,
) )
from ...tf_utils import shape_list from ...tf_utils import shape_list
from ...utils import logging from ...utils import logging
...@@ -679,6 +679,7 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer): ...@@ -679,6 +679,7 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
""" """
raise NotImplementedError raise NotImplementedError
@unpack_inputs
def call( def call(
self, self,
input_ids=None, input_ids=None,
...@@ -693,51 +694,29 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer): ...@@ -693,51 +694,29 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
training=False, training=False,
**kwargs, **kwargs,
): ):
inputs = input_processing( if input_ids is not None and inputs_embeds is not None:
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None: elif input_ids is not None:
input_shape = shape_list(inputs["input_ids"]) input_shape = shape_list(input_ids)
elif inputs["inputs_embeds"] is not None: elif inputs_embeds is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1] input_shape = shape_list(inputs_embeds)[:-1]
else: else:
raise ValueError("You have to specify either input_ids or inputs_embeds") raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["attention_mask"] is None: if attention_mask is None:
inputs["attention_mask"] = tf.fill(input_shape, 1) attention_mask = tf.fill(input_shape, 1)
if inputs["token_type_ids"] is None: if token_type_ids is None:
inputs["token_type_ids"] = tf.fill(input_shape, 0) token_type_ids = tf.fill(input_shape, 0)
embedding_output = self.embeddings( embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training)
inputs["input_ids"],
inputs["position_ids"],
inputs["token_type_ids"],
inputs["inputs_embeds"],
training=inputs["training"],
)
# We create a 3D attention mask from a 2D tensor mask. # We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length] # Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention # this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1])) extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1]))
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for # masked positions, this operation will create a tensor which is 0.0 for
...@@ -754,25 +733,25 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer): ...@@ -754,25 +733,25 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
# attention_probs has shape bsz x n_heads x N x N # attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if inputs["head_mask"] is not None: if head_mask is not None:
raise NotImplementedError raise NotImplementedError
else: else:
inputs["head_mask"] = [None] * self.num_hidden_layers head_mask = [None] * self.num_hidden_layers
encoder_outputs = self.encoder( encoder_outputs = self.encoder(
embedding_output, embedding_output,
extended_attention_mask, extended_attention_mask,
inputs["head_mask"], head_mask,
inputs["output_attentions"], output_attentions,
inputs["output_hidden_states"], output_hidden_states,
inputs["return_dict"], return_dict,
training=inputs["training"], training=training,
) )
sequence_output = encoder_outputs[0] sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not inputs["return_dict"]: if not return_dict:
return ( return (
sequence_output, sequence_output,
pooled_output, pooled_output,
...@@ -929,6 +908,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel): ...@@ -929,6 +908,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
super().__init__(config, *inputs, **kwargs) super().__init__(config, *inputs, **kwargs)
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC, processor_class=_TOKENIZER_FOR_DOC,
...@@ -950,9 +930,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel): ...@@ -950,9 +930,7 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
training=False, training=False,
**kwargs, **kwargs,
): ):
inputs = input_processing( outputs = self.mobilebert(
func=self.call,
config=self.config,
input_ids=input_ids, input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
...@@ -963,19 +941,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel): ...@@ -963,19 +941,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
return outputs return outputs
...@@ -1013,6 +978,7 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): ...@@ -1013,6 +978,7 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
...@@ -1044,10 +1010,8 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): ...@@ -1044,10 +1010,8 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
>>> outputs = model(input_ids) >>> outputs = model(input_ids)
>>> prediction_scores, seq_relationship_scores = outputs[:2] >>> prediction_scores, seq_relationship_scores = outputs[:2]
```""" ```"""
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1057,26 +1021,13 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): ...@@ -1057,26 +1021,13 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
sequence_output, pooled_output = outputs[:2] sequence_output, pooled_output = outputs[:2]
prediction_scores = self.predictions(sequence_output) prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output) seq_relationship_score = self.seq_relationship(pooled_output)
if not inputs["return_dict"]: if not return_dict:
return (prediction_scores, seq_relationship_score) + outputs[2:] return (prediction_scores, seq_relationship_score) + outputs[2:]
return TFMobileBertForPreTrainingOutput( return TFMobileBertForPreTrainingOutput(
...@@ -1120,6 +1071,7 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel ...@@ -1120,6 +1071,7 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC, processor_class=_TOKENIZER_FOR_DOC,
...@@ -1148,10 +1100,8 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel ...@@ -1148,10 +1100,8 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels loss is only computed for the tokens with labels
""" """
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1160,28 +1110,14 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel ...@@ -1160,28 +1110,14 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
labels=labels,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
sequence_output = outputs[0] sequence_output = outputs[0]
prediction_scores = self.predictions(sequence_output, training=inputs["training"]) prediction_scores = self.predictions(sequence_output, training=training)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], prediction_scores) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not inputs["return_dict"]: if not return_dict:
output = (prediction_scores,) + outputs[2:] output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
...@@ -1224,6 +1160,7 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS ...@@ -1224,6 +1160,7 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert")
self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls")
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def call( def call(
...@@ -1259,10 +1196,8 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS ...@@ -1259,10 +1196,8 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
```""" ```"""
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1271,32 +1206,18 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS ...@@ -1271,32 +1206,18 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
next_sentence_label=next_sentence_label,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
pooled_output = outputs[1] pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output) seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = ( next_sentence_loss = (
None None
if inputs["next_sentence_label"] is None if next_sentence_label is None
else self.hf_compute_loss(labels=inputs["next_sentence_label"], logits=seq_relationship_scores) else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores)
) )
if not inputs["return_dict"]: if not return_dict:
output = (seq_relationship_scores,) + outputs[2:] output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
...@@ -1345,6 +1266,7 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque ...@@ -1345,6 +1266,7 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC, processor_class=_TOKENIZER_FOR_DOC,
...@@ -1373,10 +1295,8 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque ...@@ -1373,10 +1295,8 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
""" """
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1385,30 +1305,16 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque ...@@ -1385,30 +1305,16 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
labels=labels,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
pooled_output = outputs[1] pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=inputs["training"]) pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output) logits = self.classifier(pooled_output)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], logits) loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not inputs["return_dict"]: if not return_dict:
output = (logits,) + outputs[2:] output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
...@@ -1453,6 +1359,7 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1453,6 +1359,7 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
) )
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC, processor_class=_TOKENIZER_FOR_DOC,
...@@ -1486,10 +1393,8 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1486,10 +1393,8 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss. are not taken into account for computing the loss.
""" """
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1498,22 +1403,7 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1498,22 +1403,7 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
start_positions=start_positions,
end_positions=end_positions,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
) )
sequence_output = outputs[0] sequence_output = outputs[0]
...@@ -1523,12 +1413,11 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1523,12 +1413,11 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
end_logits = tf.squeeze(end_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1)
loss = None loss = None
if inputs["start_positions"] is not None and inputs["end_positions"] is not None: if start_positions is not None and end_positions is not None:
labels = {"start_position": inputs["start_positions"]} labels = {"start_position": start_positions, "end_position": end_positions}
labels["end_position"] = inputs["end_positions"]
loss = self.hf_compute_loss(labels, (start_logits, end_logits)) loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not inputs["return_dict"]: if not return_dict:
output = (start_logits, end_logits) + outputs[2:] output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
...@@ -1586,6 +1475,7 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic ...@@ -1586,6 +1475,7 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
""" """
return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)}
@unpack_inputs
@add_start_docstrings_to_model_forward( @add_start_docstrings_to_model_forward(
MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
) )
...@@ -1615,43 +1505,20 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic ...@@ -1615,43 +1505,20 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
""" """
inputs = input_processing( if input_ids is not None:
func=self.call, num_choices = shape_list(input_ids)[1]
config=self.config, seq_length = shape_list(input_ids)[2]
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None:
num_choices = shape_list(inputs["input_ids"])[1]
seq_length = shape_list(inputs["input_ids"])[2]
else: else:
num_choices = shape_list(inputs["inputs_embeds"])[1] num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs["inputs_embeds"])[2] seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = ( flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
) flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_token_type_ids = (
tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None
)
flat_position_ids = (
tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None
)
flat_inputs_embeds = ( flat_inputs_embeds = (
tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs["inputs_embeds"] is not None if inputs_embeds is not None
else None else None
) )
outputs = self.mobilebert( outputs = self.mobilebert(
...@@ -1659,21 +1526,21 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic ...@@ -1659,21 +1526,21 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
flat_attention_mask, flat_attention_mask,
flat_token_type_ids, flat_token_type_ids,
flat_position_ids, flat_position_ids,
inputs["head_mask"], head_mask,
flat_inputs_embeds, flat_inputs_embeds,
inputs["output_attentions"], output_attentions,
inputs["output_hidden_states"], output_hidden_states,
return_dict=inputs["return_dict"], return_dict=return_dict,
training=inputs["training"], training=training,
) )
pooled_output = outputs[1] pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=inputs["training"]) pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output) logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices)) reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], reshaped_logits) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not inputs["return_dict"]: if not return_dict:
output = (reshaped_logits,) + outputs[2:] output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
...@@ -1738,6 +1605,7 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla ...@@ -1738,6 +1605,7 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
) )
@unpack_inputs
@add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings( @add_code_sample_docstrings(
processor_class=_TOKENIZER_FOR_DOC, processor_class=_TOKENIZER_FOR_DOC,
...@@ -1764,10 +1632,8 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla ...@@ -1764,10 +1632,8 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
""" """
inputs = input_processing( outputs = self.mobilebert(
func=self.call, input_ids,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask, attention_mask=attention_mask,
token_type_ids=token_type_ids, token_type_ids=token_type_ids,
position_ids=position_ids, position_ids=position_ids,
...@@ -1776,30 +1642,16 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla ...@@ -1776,30 +1642,16 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
output_attentions=output_attentions, output_attentions=output_attentions,
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
labels=labels,
training=training, training=training,
kwargs_call=kwargs,
)
outputs = self.mobilebert(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
position_ids=inputs["position_ids"],
head_mask=inputs["head_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=return_dict,
training=inputs["training"],
) )
sequence_output = outputs[0] sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=inputs["training"]) sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output) logits = self.classifier(sequence_output)
loss = None if inputs["labels"] is None else self.hf_compute_loss(inputs["labels"], logits) loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not inputs["return_dict"]: if not return_dict:
output = (logits,) + outputs[2:] output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment