Unverified Commit e34dd055 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix doc example: mask_time_indices (numpy) has no attribute 'to' (#15033)



* fix doc example - AttributeError: 'numpy.ndarray' object has no attribute 'to'

* fix more

* Apply suggestions from code review

* Update src/transformers/models/unispeech/modeling_unispeech.py
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
parent 927f6544
...@@ -1290,6 +1290,7 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel): ...@@ -1290,6 +1290,7 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
>>> batch_size, raw_sequence_length = input_values.shape >>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
>>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2)
>>> mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
>>> with torch.no_grad(): >>> with torch.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices) ... outputs = model(input_values, mask_time_indices=mask_time_indices)
......
...@@ -1322,6 +1322,7 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel): ...@@ -1322,6 +1322,7 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
>>> batch_size, raw_sequence_length = input_values.shape >>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
>>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2)
>>> mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
>>> with torch.no_grad(): >>> with torch.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices) ... outputs = model(input_values, mask_time_indices=mask_time_indices)
......
...@@ -1460,6 +1460,7 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel): ...@@ -1460,6 +1460,7 @@ class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
>>> batch_size, raw_sequence_length = input_values.shape >>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length) >>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
>>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2) >>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2)
>>> mask_time_indices = torch.tensor(mask_time_indices, device=input_values.device, dtype=torch.long)
>>> with torch.no_grad(): >>> with torch.no_grad():
... outputs = model(input_values, mask_time_indices=mask_time_indices) ... outputs = model(input_values, mask_time_indices=mask_time_indices)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment