"tests/models/realm/test_tokenization_realm.py" did not exist on "dd4df80f0b77c8f8e07e502298df0121cada9ce8"
Unverified Commit e2d22eef authored by Nicolas Patry's avatar Nicolas Patry Committed by GitHub
Browse files

Moving feature-extraction pipeline to new testing scheme (#12843)



* Update feature extraction pipelilne.

* Leaving 1 small model for actual values check.

* Fixes tests

- Better support for tokenizer with no pad token
- Increasing PegasusModelTesterConfig for pipelines
- Test of feature extraction are more permissive + don't test Multimodel
models + encoder-decoder.

* Fixing model loading with incorrect shape (+ model with HEAD).

* Update tests/test_pipelines_common.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Revert modeling_utils modification.

* Some corrections.

* Update tests/test_pipelines_common.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_pipelines_feature_extraction.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Syntax.

* Fixing text-classification tests.

* Don't modify this file.
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent 640421c0
......@@ -46,6 +46,7 @@ from .configuration_pegasus import PegasusConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/pegasus-large"
_CONFIG_FOR_DOC = "PegasusConfig"
_TOKENIZER_FOR_DOC = "PegasusTokenizer"
......
......@@ -134,6 +134,8 @@ def infer_framework_load_model(
try:
model = model_class.from_pretrained(model, **kwargs)
if hasattr(model, "eval"):
model = model.eval()
# Stop loading on the first successful load.
break
except (OSError, ValueError):
......@@ -746,7 +748,6 @@ class Pipeline(_ScikitCompat):
Parse arguments and tokenize
"""
# Parse arguments
try:
inputs = self.tokenizer(
inputs,
add_special_tokens=add_special_tokens,
......@@ -754,21 +755,26 @@ class Pipeline(_ScikitCompat):
padding=padding,
truncation=truncation,
)
except ValueError:
# Can be linked to no padding token, if padding_token does not exist we should recover
inputs = self.tokenizer(
inputs,
add_special_tokens=add_special_tokens,
return_tensors=self.framework,
padding=False,
truncation=truncation,
)
return inputs
def __call__(self, *args, **kwargs):
inputs = self._parse_and_tokenize(*args, **kwargs)
return self._forward(inputs)
def __call__(self, inputs, *args, **kwargs):
try:
model_inputs = self._parse_and_tokenize(inputs, *args, **kwargs)
outputs = self._forward(model_inputs)
return outputs
except ValueError:
# XXX: Some tokenizer do NOT have a pad token, hence we cannot run the inference
# in a batch, instead we run everything sequentially
if isinstance(inputs, list):
values = []
for input_ in inputs:
model_input = self._parse_and_tokenize(input_, padding=False, *args, **kwargs)
value = self._forward(model_input)
values.append(value.squeeze(0))
else:
model_input = self._parse_and_tokenize(inputs, padding=False, *args, **kwargs)
values = self._forward(model_input)
return values
def _forward(self, inputs, return_tensors=False):
"""
......
......@@ -79,4 +79,10 @@ class FeatureExtractionPipeline(Pipeline):
Return:
A nested list of :obj:`float`: The features computed by the model.
"""
return super().__call__(*args, **kwargs).tolist()
results = super().__call__(*args, **kwargs)
if isinstance(results, list):
# Sequential run
results = [r.tolist() for r in results]
else:
results = results.tolist()
return results
......@@ -117,6 +117,24 @@ class PegasusModelTester:
inputs_dict = prepare_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_pipeline_config(self):
return PegasusConfig(
vocab_size=200,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=200,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
def get_config(self):
return PegasusConfig(
vocab_size=self.vocab_size,
......
......@@ -111,6 +111,24 @@ class T5ModelTester:
lm_labels,
)
def get_pipeline_config(self):
return T5Config(
vocab_size=166, # t5 forces 100 extra tokens
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def get_config(self):
return T5Config(
vocab_size=self.vocab_size,
......
......@@ -50,7 +50,7 @@ class TFPegasusModelTester:
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
max_position_embeddings=40,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
......
......@@ -29,7 +29,11 @@ logger = logging.getLogger(__name__)
def get_checkpoint_from_architecture(architecture):
try:
module = importlib.import_module(architecture.__module__)
except ImportError:
logger.error(f"Ignoring architecture {architecture}")
return
if hasattr(module, "_CHECKPOINT_FOR_DOC"):
return module._CHECKPOINT_FOR_DOC
......@@ -46,8 +50,12 @@ def get_tiny_config_from_class(configuration_class):
model_type = configuration_class.model_type
camel_case_model_name = configuration_class.__name__.split("Config")[0]
try:
module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
except (ImportError, AttributeError):
logger.error(f"No model tester class for {configuration_class.__name__}")
return
if model_tester_class is None:
logger.warning(f"No model tester class for {configuration_class.__name__}")
......@@ -95,6 +103,7 @@ class PipelineTestCaseMeta(type):
model = model.eval()
try:
tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
if hasattr(model.config, "max_position_embeddings"):
tokenizer.model_max_length = model.config.max_position_embeddings
# Rust Panic exception are NOT Exception subclass
# Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
......@@ -107,26 +116,20 @@ class PipelineTestCaseMeta(type):
return test
mapping = dct.get("model_mapping", {})
for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
mapping = dct.get(key, {})
if mapping:
for configuration, model_architecture in mapping.items():
checkpoint = get_checkpoint_from_architecture(model_architecture)
tiny_config = get_tiny_config_from_class(configuration)
tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
for tokenizer_class in tokenizer_classes:
if tokenizer_class is not None and tokenizer_class.__name__.endswith("Fast"):
test_name = f"test_pt_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_class.__name__}"
dct[test_name] = gen_test(model_architecture, checkpoint, tiny_config, tokenizer_class)
for configuration, model_architectures in mapping.items():
if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,)
tf_mapping = dct.get("tf_model_mapping", {})
if tf_mapping:
for configuration, model_architecture in tf_mapping.items():
for model_architecture in model_architectures:
checkpoint = get_checkpoint_from_architecture(model_architecture)
tiny_config = get_tiny_config_from_class(configuration)
tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
for tokenizer_class in tokenizer_classes:
if tokenizer_class is not None and tokenizer_class.__name__.endswith("Fast"):
test_name = f"test_tf_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_class.__name__}"
test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_class.__name__}"
dct[test_name] = gen_test(model_architecture, checkpoint, tiny_config, tokenizer_class)
return type.__new__(mcs, name, bases, dct)
......
......@@ -14,13 +14,72 @@
import unittest
from .test_pipelines_common import MonoInputPipelineCommonMixin
from transformers import MODEL_MAPPING, TF_MODEL_MAPPING, FeatureExtractionPipeline, LxmertConfig, pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
from .test_pipelines_common import PipelineTestCaseMeta
class FeatureExtractionPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "feature-extraction"
small_models = [
"sshleifer/tiny-distilbert-base-cased"
] # Default model - Models tested without the @slow decorator
large_models = [None] # Models tested with the @slow decorator
mandatory_keys = {} # Keys which should be in the output
@is_pipeline_test
class FeatureExtractionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_MAPPING
tf_model_mapping = TF_MODEL_MAPPING
@require_torch
def test_small_model_pt(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[-0.454, 0.966, 0.619, 0.262, 0.669, -0.661, -0.066, -0.513, -0.768, -0.177, 1.771, -0.665, -0.649, 0.219, 0.236, -0.375, 1.155, -1.07, 0.208, -0.799, 1.065, -1.223, 0.554, 1.274, 0.458, 2.292, -0.481, -0.928, -2.469, -1.692, 0.182, 1.06], [-0.187, -1.277, 0.849, -0.439, -0.967, -1.347, 1.063, 0.469, 1.086, -1.253, 0.349, 0.057, 1.031, -1.903, -0.432, -1.377, 0.379, 0.733, -1.043, 1.307, 0.865, 0.229, 1.373, 1.671, -0.285, 0.599, -1.418, -1.179, -0.369, 1.039, -0.705, 1.082], [-1.735, 1.102, 0.398, -0.245, 1.452, 0.46, -1.734, -0.746, 1.831, 0.562, 1.464, -0.342, -0.619, -0.455, 0.127, -1.209, -0.686, -0.395, -0.316, 2.467, -0.379, 0.328, 0.639, 0.4, -1.097, -0.096, 0.397, -0.806, -1.621, 1.127, -0.345, 0.074], [0.296, -0.638, 1.938, -0.151, -1.19, 1.445, 1.318, 0.711, -0.125, 0.127, -2.179, 0.481, -1.019, 1.178, 0.318, 1.858, -1.646, 0.185, -0.072, -0.979, 0.82, -1.374, 0.836, -1.019, 0.043, -0.156, -0.095, 0.641, -0.195, -0.076, -1.554, 0.275], [-0.266, 0.971, 0.745, -0.37, 1.42, -0.5, -0.53, 0.061, 1.311, -0.1, 1.796, 0.53, -0.739, -0.325, 0.28, -1.72, 0.382, -1.118, 0.442, 1.84, -2.497, 1.003, -0.788, -0.224, -0.604, -1.259, -0.475, 1.18, -1.356, 0.695, 0.201, 0.016], [-0.618, -1.495, -0.67, -0.106, -1.265, -0.51, -1.752, 1.018, 0.674, 0.181, 0.297, 0.479, -0.185, 0.081, -2.44, -0.239, 1.081, -1.38, 0.679, 0.878, 1.336, -1.347, 0.969, -0.847, 0.293, 0.476, 1.647, -0.641, 0.66, 1.236, 0.761, 0.751]]]) # fmt: skip
@require_tf
def test_small_model_tf(self):
feature_extractor = pipeline(
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
outputs = feature_extractor("This is a test")
self.assertEqual(
nested_simplify(outputs),
[[[-0.454, 0.966, 0.619, 0.262, 0.669, -0.661, -0.066, -0.513, -0.768, -0.177, 1.771, -0.665, -0.649, 0.219, 0.236, -0.375, 1.155, -1.07, 0.208, -0.799, 1.065, -1.223, 0.554, 1.274, 0.458, 2.292, -0.481, -0.928, -2.469, -1.692, 0.182, 1.06], [-0.187, -1.277, 0.849, -0.439, -0.967, -1.347, 1.063, 0.469, 1.086, -1.253, 0.349, 0.057, 1.031, -1.903, -0.432, -1.377, 0.379, 0.733, -1.043, 1.307, 0.865, 0.229, 1.373, 1.671, -0.285, 0.599, -1.418, -1.179, -0.369, 1.039, -0.705, 1.082], [-1.735, 1.102, 0.398, -0.245, 1.452, 0.46, -1.734, -0.746, 1.831, 0.562, 1.464, -0.342, -0.619, -0.455, 0.127, -1.209, -0.686, -0.395, -0.316, 2.467, -0.379, 0.328, 0.639, 0.4, -1.097, -0.096, 0.397, -0.806, -1.621, 1.127, -0.345, 0.074], [0.296, -0.638, 1.938, -0.151, -1.19, 1.445, 1.318, 0.711, -0.125, 0.127, -2.179, 0.481, -1.019, 1.178, 0.318, 1.858, -1.646, 0.185, -0.072, -0.979, 0.82, -1.374, 0.836, -1.019, 0.043, -0.156, -0.095, 0.641, -0.195, -0.076, -1.554, 0.275], [-0.266, 0.971, 0.745, -0.37, 1.42, -0.5, -0.53, 0.061, 1.311, -0.1, 1.796, 0.53, -0.739, -0.325, 0.28, -1.72, 0.382, -1.118, 0.442, 1.84, -2.497, 1.003, -0.788, -0.224, -0.604, -1.259, -0.475, 1.18, -1.356, 0.695, 0.201, 0.016], [-0.618, -1.495, -0.67, -0.106, -1.265, -0.51, -1.752, 1.018, 0.674, 0.181, 0.297, 0.479, -0.185, 0.081, -2.44, -0.239, 1.081, -1.38, 0.679, 0.878, 1.336, -1.347, 0.969, -0.847, 0.293, 0.476, 1.647, -0.641, 0.66, 1.236, 0.761, 0.751]]]) # fmt: skip
def get_shape(self, input_, shape=None):
if shape is None:
shape = []
if isinstance(input_, list):
subshapes = [self.get_shape(in_, shape) for in_ in input_]
if all(s == 0 for s in subshapes):
shape.append(len(input_))
else:
subshape = subshapes[0]
shape = [len(input_), *subshape]
elif isinstance(input_, float):
return 0
else:
raise ValueError("We expect lists of floats, nothing else")
return shape
def run_pipeline_test(self, model, tokenizer):
if isinstance(model.config, LxmertConfig):
# This is an bimodal model, we need to find a more consistent way
# to switch on those models.
return
feature_extractor = FeatureExtractionPipeline(model=model, tokenizer=tokenizer)
if feature_extractor.model.config.is_encoder_decoder:
# encoder_decoder models are trickier for this pipeline.
# Do we want encoder + decoder inputs to get some featues?
# Do we want encoder only features ?
# For now ignore those.
return
outputs = feature_extractor("This is a test")
shape = self.get_shape(outputs)
self.assertEqual(shape[0], 1)
outputs = feature_extractor(["This is a test", "Another test"])
shape = self.get_shape(outputs)
self.assertEqual(shape[0], 2)
......@@ -30,6 +30,24 @@ class TextClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestC
model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
@require_torch
def test_pt_bert_small(self):
text_classifier = pipeline(
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="pt"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_1", "score": 0.502}])
@require_tf
def test_tf_bert_small(self):
text_classifier = pipeline(
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="tf"
)
outputs = text_classifier("This is great !")
self.assertEqual(nested_simplify(outputs), [{"label": "LABEL_1", "score": 0.502}])
@slow
@require_torch
def test_pt_bert(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment