Unverified Commit e1a5cc33 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Fix doctests for `DeiT` and `TFGroupViT` (#19466)



* Fix some doctests
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent d7dc774a
...@@ -731,7 +731,7 @@ class DeiTForImageClassification(DeiTPreTrainedModel): ...@@ -731,7 +731,7 @@ class DeiTForImageClassification(DeiTPreTrainedModel):
>>> # model predicts one of the 1000 ImageNet classes >>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = logits.argmax(-1).item() >>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx]) >>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: maillot Predicted class: magpie
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
......
...@@ -1955,6 +1955,7 @@ class TFGroupViTModel(TFGroupViTPreTrainedModel): ...@@ -1955,6 +1955,7 @@ class TFGroupViTModel(TFGroupViTPreTrainedModel):
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> from transformers import AutoProcessor, TFGroupViTModel >>> from transformers import AutoProcessor, TFGroupViTModel
>>> import tensorflow as tf
>>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = TFGroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
...@@ -1968,7 +1969,7 @@ class TFGroupViTModel(TFGroupViTPreTrainedModel): ...@@ -1968,7 +1969,7 @@ class TFGroupViTModel(TFGroupViTPreTrainedModel):
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities >>> probs = tf.math.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```""" ```"""
outputs = self.groupvit( outputs = self.groupvit(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment