"examples/vscode:/vscode.git/clone" did not exist on "1d3a1cc44b6af824f708fab114b174a27f9db2c5"
Unverified Commit e0c3bc8e authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Create README.md

parent c356b987
---
language: en
license: apache-2.0
datasets:
- discofuse
---
# Roberta2Roberta_L-24_discofuse EncoderDecoder model
The model was introduced in
[this paper](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn and first released in [this repository](https://tfhub.dev/google/bertseq2seq/roberta24_discofuse/1).
The model is an encoder-decoder model that was initialized on the `roberta-large` checkpoints for both the encoder
and decoder and fine-tuned on sentencefusion on the discofuse dataset, which is linked above.
Disclaimer: The model card has been written by the Hugging Face team.
## How to use
You can use this model for sentence fusion, *e.g.*
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
model = AutoModelForSeq2SeqLM.from_pretrained("google/roberta2roberta_L-24_discofuse")
discofuse = """As a run-blocker, Zeitler moves relatively well. Zeitler often struggles at the point of contact in space."""
input_ids = tokenizer(discofuse, return_tensors="pt").input_ids
output_ids = model.generate(input_ids)[0]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
# should output
# As a run-blocker, Zeitler moves relatively well. However, Zeitler often struggles at the point of contact in space.
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment