Unverified Commit df735d13 authored by Dom Miketa's avatar Dom Miketa Committed by GitHub
Browse files

[WIP] Fix Pyright static type checking by replacing if-else imports with try-except (#16578)



* rebase and isort

* modify cookiecutter init

* fix cookiecutter auto imports

* fix clean_frameworks_in_init

* fix add_model_to_main_init

* blackify

* replace unnecessary f-strings

* update yolos imports

* fix roberta import bug

* fix yolos missing dependency

* fix add_model_like and cookiecutter bug

* fix repository consistency error

* modify cookiecutter, fix add_new_model_like

* remove stale line
Co-authored-by: default avatarDom Miketa <dmiketa@exscientia.co.uk>
parent 7783fa6b
......@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
......@@ -26,7 +26,12 @@ _import_structure = {
"tokenization_ctrl": ["CTRLTokenizer"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_ctrl"] = [
"CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"CTRLForSequenceClassification",
......@@ -35,7 +40,12 @@ if is_torch_available():
"CTRLPreTrainedModel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_ctrl"] = [
"TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCTRLForSequenceClassification",
......@@ -49,7 +59,12 @@ if TYPE_CHECKING:
from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig
from .tokenization_ctrl import CTRLTokenizer
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ctrl import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
......@@ -58,7 +73,12 @@ if TYPE_CHECKING:
CTRLPreTrainedModel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_ctrl import (
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCTRLForSequenceClassification,
......
......@@ -18,9 +18,7 @@
from typing import TYPE_CHECKING
from transformers.utils.import_utils import is_tf_available
from ...utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
......@@ -40,7 +38,12 @@ _import_structure = {
],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_data2vec_audio"] = [
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecAudioForAudioFrameClassification",
......@@ -90,7 +93,12 @@ if TYPE_CHECKING:
Data2VecVisionOnnxConfig,
)
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_data2vec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
Data2VecAudioForAudioFrameClassification,
......
......@@ -18,7 +18,13 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -26,10 +32,20 @@ _import_structure = {
"tokenization_deberta": ["DebertaTokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_deberta_fast"] = ["DebertaTokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_deberta"] = [
"DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaForMaskedLM",
......@@ -40,7 +56,12 @@ if is_torch_available():
"DebertaPreTrainedModel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_deberta"] = [
"TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaForMaskedLM",
......@@ -56,10 +77,20 @@ if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig
from .tokenization_deberta import DebertaTokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
......@@ -70,7 +101,12 @@ if TYPE_CHECKING:
DebertaPreTrainedModel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
......
......@@ -18,7 +18,13 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -26,10 +32,20 @@ _import_structure = {
"tokenization_deberta_v2": ["DebertaV2Tokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_deberta_v2_fast"] = ["DebertaV2TokenizerFast"]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_deberta_v2"] = [
"TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDebertaV2ForMaskedLM",
......@@ -40,7 +56,12 @@ if is_tf_available():
"TFDebertaV2PreTrainedModel",
]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_deberta_v2"] = [
"DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST",
"DebertaV2ForMaskedLM",
......@@ -56,10 +77,20 @@ if TYPE_CHECKING:
from .configuration_deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
from .tokenization_deberta_v2 import DebertaV2Tokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_v2_fast import DebertaV2TokenizerFast
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta_v2 import (
TF_DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaV2ForMaskedLM,
......@@ -70,7 +101,12 @@ if TYPE_CHECKING:
TFDebertaV2PreTrainedModel,
)
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta_v2 import (
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaV2ForMaskedLM,
......
......@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
......@@ -28,7 +28,12 @@ _import_structure = {
],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_decision_transformer"] = [
"DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"DecisionTransformerGPT2Model",
......@@ -44,7 +49,12 @@ if TYPE_CHECKING:
DecisionTransformerConfig,
)
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
DecisionTransformerGPT2Model,
......
......@@ -17,17 +17,27 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"],
}
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_deit"] = ["DeiTFeatureExtractor"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_deit"] = [
"DEIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DeiTForImageClassification",
......@@ -41,10 +51,20 @@ if is_torch_available():
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
......
......@@ -18,17 +18,27 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_timm_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_timm_available, is_vision_available
_import_structure = {
"configuration_detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
}
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"]
if is_timm_available():
try:
if not is_timm_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_detr"] = [
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"DetrForObjectDetection",
......@@ -41,10 +51,20 @@ if is_timm_available():
if TYPE_CHECKING:
from .configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_detr import DetrFeatureExtractor
if is_timm_available():
try:
if not is_timm_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_detr import (
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
DetrForObjectDetection,
......
......@@ -18,7 +18,14 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -30,10 +37,20 @@ _import_structure = {
"tokenization_distilbert": ["DistilBertTokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_distilbert_fast"] = ["DistilBertTokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_distilbert"] = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
......@@ -45,7 +62,12 @@ if is_torch_available():
"DistilBertPreTrainedModel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_distilbert"] = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
......@@ -58,7 +80,12 @@ if is_tf_available():
"TFDistilBertPreTrainedModel",
]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_distilbert"] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
......@@ -78,10 +105,20 @@ if TYPE_CHECKING:
)
from .tokenization_distilbert import DistilBertTokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
......@@ -93,7 +130,12 @@ if TYPE_CHECKING:
DistilBertPreTrainedModel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
......@@ -106,7 +148,12 @@ if TYPE_CHECKING:
TFDistilBertPreTrainedModel,
)
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
......
......@@ -18,7 +18,13 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -32,14 +38,24 @@ _import_structure = {
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_dpr_fast"] = [
"DPRContextEncoderTokenizerFast",
"DPRQuestionEncoderTokenizerFast",
"DPRReaderTokenizerFast",
]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_dpr"] = [
"DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -53,7 +69,12 @@ if is_torch_available():
"DPRReader",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_dpr"] = [
"TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
......@@ -76,14 +97,24 @@ if TYPE_CHECKING:
DPRReaderTokenizer,
)
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_dpr_fast import (
DPRContextEncoderTokenizerFast,
DPRQuestionEncoderTokenizerFast,
DPRReaderTokenizerFast,
)
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpr import (
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
......@@ -97,7 +128,12 @@ if TYPE_CHECKING:
DPRReader,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_dpr import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
......
......@@ -18,16 +18,27 @@
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
_import_structure = {
"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"],
}
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_dpt"] = ["DPTFeatureExtractor"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_dpt"] = [
"DPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPTForDepthEstimation",
......@@ -40,10 +51,20 @@ if is_torch_available():
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
......
......@@ -18,7 +18,14 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -26,10 +33,20 @@ _import_structure = {
"tokenization_electra": ["ElectraTokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_electra_fast"] = ["ElectraTokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_electra"] = [
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForCausalLM",
......@@ -44,7 +61,12 @@ if is_torch_available():
"load_tf_weights_in_electra",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_electra"] = [
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
......@@ -57,7 +79,12 @@ if is_tf_available():
"TFElectraPreTrainedModel",
]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_electra"] = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
......@@ -75,10 +102,20 @@ if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
......@@ -93,7 +130,12 @@ if TYPE_CHECKING:
load_tf_weights_in_electra,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
......@@ -106,7 +148,12 @@ if TYPE_CHECKING:
TFElectraPreTrainedModel,
)
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
......
......@@ -18,32 +18,68 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"configuration_encoder_decoder": ["EncoderDecoderConfig"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_encoder_decoder"] = ["EncoderDecoderModel"]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_encoder_decoder"] = ["TFEncoderDecoderModel"]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_encoder_decoder"] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
......
......@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_import_structure = {
......@@ -26,7 +26,12 @@ _import_structure = {
"tokenization_flaubert": ["FlaubertTokenizer"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flaubert"] = [
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"FlaubertForMultipleChoice",
......@@ -38,7 +43,12 @@ if is_torch_available():
"FlaubertWithLMHeadModel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_flaubert"] = [
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFlaubertForMultipleChoice",
......@@ -55,7 +65,12 @@ if TYPE_CHECKING:
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertOnnxConfig
from .tokenization_flaubert import FlaubertTokenizer
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flaubert import (
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertForMultipleChoice,
......@@ -67,7 +82,12 @@ if TYPE_CHECKING:
FlaubertWithLMHeadModel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice,
......
......@@ -17,22 +17,41 @@
# limitations under the License.
from typing import TYPE_CHECKING
from transformers import is_sentencepiece_available
from ...utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
}
if is_sentencepiece_available():
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_fnet"] = ["FNetTokenizer"]
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_fnet"] = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
......@@ -51,13 +70,28 @@ if is_torch_available():
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
if is_sentencepiece_available():
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
......
......@@ -18,7 +18,7 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
......@@ -26,7 +26,12 @@ _import_structure = {
"tokenization_fsmt": ["FSMTTokenizer"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_fsmt"] = ["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]
......@@ -34,7 +39,12 @@ if TYPE_CHECKING:
from .configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig
from .tokenization_fsmt import FSMTTokenizer
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
else:
......
......@@ -18,7 +18,13 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -27,10 +33,20 @@ _import_structure = {
"tokenization_funnel": ["FunnelTokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_funnel"] = [
"FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"FunnelBaseModel",
......@@ -45,7 +61,12 @@ if is_torch_available():
"load_tf_weights_in_funnel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_funnel"] = [
"TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFFunnelBaseModel",
......@@ -64,10 +85,20 @@ if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
......@@ -82,7 +113,12 @@ if TYPE_CHECKING:
load_tf_weights_in_funnel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
......
......@@ -18,17 +18,27 @@
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import _LazyModule, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_import_structure = {
"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"],
}
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["feature_extraction_glpn"] = ["GLPNFeatureExtractor"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_glpn"] = [
"GLPN_PRETRAINED_MODEL_ARCHIVE_LIST",
"GLPNForDepthEstimation",
......@@ -41,10 +51,20 @@ if is_torch_available():
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
if is_vision_available():
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
......
......@@ -18,7 +18,14 @@
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
......@@ -26,10 +33,20 @@ _import_structure = {
"tokenization_gpt2": ["GPT2Tokenizer"],
}
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_gpt2_fast"] = ["GPT2TokenizerFast"]
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gpt2"] = [
"GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPT2DoubleHeadsModel",
......@@ -41,7 +58,12 @@ if is_torch_available():
"load_tf_weights_in_gpt2",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_gpt2"] = [
"TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGPT2DoubleHeadsModel",
......@@ -52,17 +74,32 @@ if is_tf_available():
"TFGPT2PreTrainedModel",
]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gpt2"] = ["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]
if TYPE_CHECKING:
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2OnnxConfig
from .tokenization_gpt2 import GPT2Tokenizer
if is_tokenizers_available():
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt2_fast import GPT2TokenizerFast
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt2 import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel,
......@@ -74,7 +111,12 @@ if TYPE_CHECKING:
load_tf_weights_in_gpt2,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_gpt2 import (
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGPT2DoubleHeadsModel,
......@@ -85,7 +127,12 @@ if TYPE_CHECKING:
TFGPT2PreTrainedModel,
)
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel
else:
......
......@@ -17,14 +17,19 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_import_structure = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gpt_neo"] = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
......@@ -34,7 +39,12 @@ if is_torch_available():
"load_tf_weights_in_gpt_neo",
]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gpt_neo"] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
......@@ -45,7 +55,12 @@ if is_flax_available():
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
......@@ -55,7 +70,12 @@ if TYPE_CHECKING:
load_tf_weights_in_gpt_neo,
)
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
......
......@@ -17,14 +17,25 @@
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import _LazyModule, is_flax_available, is_tf_available, is_torch_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"],
}
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_gptj"] = [
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTJForCausalLM",
......@@ -34,7 +45,12 @@ if is_torch_available():
"GPTJPreTrainedModel",
]
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_gptj"] = [
"TFGPTJForCausalLM",
"TFGPTJForQuestionAnswering",
......@@ -43,7 +59,12 @@ if is_tf_available():
"TFGPTJPreTrainedModel",
]
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_gptj"] = [
"FlaxGPTJForCausalLM",
"FlaxGPTJModel",
......@@ -54,7 +75,12 @@ if is_flax_available():
if TYPE_CHECKING:
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
if is_torch_available():
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gptj import (
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTJForCausalLM,
......@@ -64,7 +90,12 @@ if TYPE_CHECKING:
GPTJPreTrainedModel,
)
if is_tf_available():
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_gptj import (
TFGPTJForCausalLM,
TFGPTJForQuestionAnswering,
......@@ -73,7 +104,12 @@ if TYPE_CHECKING:
TFGPTJPreTrainedModel,
)
if is_flax_available():
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
else:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment