Unverified Commit de64d671 authored by Mukesh K's avatar Mukesh K Committed by GitHub
Browse files

Removed Bert interdependency from Funnel transformer (#19655)



* Removed Bert interdependency from Funnel transformer

* passed consistency check

* Revert "passed consistency check"

This reverts commit ba55a0813549938fc54626794e666ee13a85c2d8.

* Fixed docstrings
Co-authored-by: default avatarmukesh663 <mukesh13034@gmail.com>
parent cbc1abc4
...@@ -14,10 +14,13 @@ ...@@ -14,10 +14,13 @@
# limitations under the License. # limitations under the License.
""" Tokenization class for Funnel Transformer.""" """ Tokenization class for Funnel Transformer."""
from typing import List, Optional import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging from ...utils import logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_funnel import FunnelTokenizer from .tokenization_funnel import FunnelTokenizer
...@@ -88,21 +91,55 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for ...@@ -88,21 +91,55 @@ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for
PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names}
class FunnelTokenizerFast(BertTokenizerFast): class FunnelTokenizerFast(PreTrainedTokenizerFast):
r""" r"""
Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
[`FunnelTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
splitting and wordpiece. refer to this superclass for more information regarding those methods.
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters. Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
clean_text (`bool`, *optional*, defaults to `True`):
Whether or not to clean the text before tokenization by removing any control characters and replacing all
whitespaces by the classic one.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
bos_token (`str`, `optional`, defaults to `"<s>"`):
The beginning of sentence token.
eos_token (`str`, `optional`, defaults to `"</s>"`):
The end of sentence token.
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
""" """
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = FunnelTokenizer slow_tokenizer_class = FunnelTokenizer
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
cls_token_type_id: int = 2 cls_token_type_id: int = 2
def __init__( def __init__(
...@@ -141,6 +178,45 @@ class FunnelTokenizerFast(BertTokenizerFast): ...@@ -141,6 +178,45 @@ class FunnelTokenizerFast(BertTokenizerFast):
**kwargs, **kwargs,
) )
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
):
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
normalizer_state["lowercase"] = do_lower_case
normalizer_state["strip_accents"] = strip_accents
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
self.do_lower_case = do_lower_case
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Funnel sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences( def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]: ) -> List[int]:
...@@ -169,3 +245,8 @@ class FunnelTokenizerFast(BertTokenizerFast): ...@@ -169,3 +245,8 @@ class FunnelTokenizerFast(BertTokenizerFast):
if token_ids_1 is None: if token_ids_1 is None:
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0]
return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment