Commit dd2d90f3 authored by thomwolf's avatar thomwolf
Browse files

update automodels

parent ee261439
...@@ -19,6 +19,13 @@ from __future__ import absolute_import, division, print_function, unicode_litera ...@@ -19,6 +19,13 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import logging import logging
from .modeling_tf_bert import TFBertModel, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertForQuestionAnswering from .modeling_tf_bert import TFBertModel, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertForQuestionAnswering
from .modeling_openai import TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel
from .modeling_gpt2 import TFGPT2Model, TFGPT2LMHeadModel
from .modeling_transfo_xl import TFTransfoXLModel, TFTransfoXLLMHeadModel
from .modeling_xlnet import TFXLNetModel, TFXLNetLMHeadModel, TFXLNetForSequenceClassification, TFXLNetForQuestionAnswering
from .modeling_xlm import TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple
from .modeling_roberta import TFRobertaModel, TFRobertaForMaskedLM, TFRobertaForSequenceClassification
from .modeling_distilbert import TFDistilBertModel, TFDistilBertForQuestionAnswering, TFDistilBertForMaskedLM, TFDistilBertForSequenceClassification
from .file_utils import add_start_docstrings from .file_utils import add_start_docstrings
...@@ -37,14 +44,14 @@ class TFAutoModel(object): ...@@ -37,14 +44,14 @@ class TFAutoModel(object):
The base model class to instantiate is selected as the first pattern matching The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertModel (DistilBERT model) - contains `distilbert`: TFDistilBertModel (DistilBERT model)
- contains `roberta`: RobertaModel (RoBERTa model) - contains `roberta`: TFRobertaModel (RoBERTa model)
- contains `bert`: TFBertModel (Bert model) - contains `bert`: TFBertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model) - contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model) - contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model) - contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model) - contains `xlnet`: TFXLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model) - contains `xlm`: TFXLMModel (XLM model)
This class cannot be instantiated using `__init__()` (throws an error). This class cannot be instantiated using `__init__()` (throws an error).
""" """
...@@ -59,24 +66,24 @@ class TFAutoModel(object): ...@@ -59,24 +66,24 @@ class TFAutoModel(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertModel (DistilBERT model) - contains `distilbert`: TFDistilBertModel (DistilBERT model)
- contains `roberta`: RobertaModel (RoBERTa model) - contains `roberta`: TFRobertaModel (RoBERTa model)
- contains `bert`: TFBertModel (Bert model) - contains `bert`: TFTFBertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model) - contains `openai-gpt`: TFOpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model) - contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model) - contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model) - contains `xlnet`: TFXLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model) - contains `xlm`: TFXLMModel (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Params: Params:
pretrained_model_name_or_path: either: pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
from_pt: (`Optional`) Boolean
Set to True if the Checkpoint is a PyTorch checkpoint.
model_args: (`optional`) Sequence of positional arguments: model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method All remaning positional arguments will be passed to the underlying model's ``__init__`` method
...@@ -121,25 +128,25 @@ class TFAutoModel(object): ...@@ -121,25 +128,25 @@ class TFAutoModel(object):
assert model.config.output_attention == True assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower) # Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = TFAutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) model = TFAutoModel.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
""" """
if 'distilbert' in pretrained_model_name_or_path: if 'distilbert' in pretrained_model_name_or_path:
raise NotImplementedError return TFDistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'roberta' in pretrained_model_name_or_path: elif 'roberta' in pretrained_model_name_or_path:
raise NotImplementedError return TFRobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path: elif 'bert' in pretrained_model_name_or_path:
return TFBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return TFBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path: elif 'openai-gpt' in pretrained_model_name_or_path:
raise NotImplementedError return TFOpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path: elif 'gpt2' in pretrained_model_name_or_path:
raise NotImplementedError return TFGPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path: elif 'transfo-xl' in pretrained_model_name_or_path:
raise NotImplementedError return TFTransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path: elif 'xlnet' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path: elif 'xlm' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of " raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
...@@ -158,14 +165,14 @@ class TFAutoModelWithLMHead(object): ...@@ -158,14 +165,14 @@ class TFAutoModelWithLMHead(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForMaskedLM (DistilBERT model) - contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
- contains `roberta`: RobertaForMaskedLM (RoBERTa model) - contains `roberta`: TFRobertaForMaskedLM (RoBERTa model)
- contains `bert`: TFBertForMaskedLM (Bert model) - contains `bert`: TFBertForMaskedLM (Bert model)
- contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model) - contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model)
- contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model) - contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model) - contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
- contains `xlnet`: XLNetLMHeadModel (XLNet model) - contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
- contains `xlm`: XLMWithLMHeadModel (XLM model) - contains `xlm`: TFXLMWithLMHeadModel (XLM model)
This class cannot be instantiated using `__init__()` (throws an error). This class cannot be instantiated using `__init__()` (throws an error).
""" """
...@@ -183,24 +190,24 @@ class TFAutoModelWithLMHead(object): ...@@ -183,24 +190,24 @@ class TFAutoModelWithLMHead(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForMaskedLM (DistilBERT model) - contains `distilbert`: TFDistilBertForMaskedLM (DistilBERT model)
- contains `roberta`: RobertaForMaskedLM (RoBERTa model) - contains `roberta`: TFRobertaForMaskedLM (RoBERTa model)
- contains `bert`: TFBertForMaskedLM (Bert model) - contains `bert`: TFBertForMaskedLM (Bert model)
- contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model) - contains `openai-gpt`: TFOpenAIGPTLMHeadModel (OpenAI GPT model)
- contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model) - contains `gpt2`: TFGPT2LMHeadModel (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model) - contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
- contains `xlnet`: XLNetLMHeadModel (XLNet model) - contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
- contains `xlm`: XLMWithLMHeadModel (XLM model) - contains `xlm`: TFXLMWithLMHeadModel (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Params: Params:
pretrained_model_name_or_path: either: pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
from_pt: (`Optional`) Boolean
Set to True if the Checkpoint is a PyTorch checkpoint.
model_args: (`optional`) Sequence of positional arguments: model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method All remaning positional arguments will be passed to the underlying model's ``__init__`` method
...@@ -245,25 +252,25 @@ class TFAutoModelWithLMHead(object): ...@@ -245,25 +252,25 @@ class TFAutoModelWithLMHead(object):
assert model.config.output_attention == True assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower) # Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = TFAutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) model = TFAutoModelWithLMHead.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
""" """
if 'distilbert' in pretrained_model_name_or_path: if 'distilbert' in pretrained_model_name_or_path:
raise NotImplementedError return TFDistilBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'roberta' in pretrained_model_name_or_path: elif 'roberta' in pretrained_model_name_or_path:
raise NotImplementedError return TFRobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path: elif 'bert' in pretrained_model_name_or_path:
return TFBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return TFBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path: elif 'openai-gpt' in pretrained_model_name_or_path:
raise NotImplementedError return TFOpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path: elif 'gpt2' in pretrained_model_name_or_path:
raise NotImplementedError return TFGPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path: elif 'transfo-xl' in pretrained_model_name_or_path:
raise NotImplementedError return TFTransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path: elif 'xlnet' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path: elif 'xlm' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of " raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
...@@ -282,11 +289,11 @@ class TFAutoModelForSequenceClassification(object): ...@@ -282,11 +289,11 @@ class TFAutoModelForSequenceClassification(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForSequenceClassification (DistilBERT model) - contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
- contains `roberta`: RobertaForSequenceClassification (RoBERTa model) - contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
- contains `bert`: TFBertForSequenceClassification (Bert model) - contains `bert`: TFBertForSequenceClassification (Bert model)
- contains `xlnet`: XLNetForSequenceClassification (XLNet model) - contains `xlnet`: TFXLNetForSequenceClassification (XLNet model)
- contains `xlm`: XLMForSequenceClassification (XLM model) - contains `xlm`: TFXLMForSequenceClassification (XLM model)
This class cannot be instantiated using `__init__()` (throws an error). This class cannot be instantiated using `__init__()` (throws an error).
""" """
...@@ -304,11 +311,11 @@ class TFAutoModelForSequenceClassification(object): ...@@ -304,11 +311,11 @@ class TFAutoModelForSequenceClassification(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForSequenceClassification (DistilBERT model) - contains `distilbert`: TFDistilBertForSequenceClassification (DistilBERT model)
- contains `roberta`: RobertaForSequenceClassification (RoBERTa model) - contains `roberta`: TFRobertaForSequenceClassification (RoBERTa model)
- contains `bert`: TFBertForSequenceClassification (Bert model) - contains `bert`: TFBertForSequenceClassification (Bert model)
- contains `xlnet`: XLNetForSequenceClassification (XLNet model) - contains `xlnet`: TFXLNetForSequenceClassification (XLNet model)
- contains `xlm`: XLMForSequenceClassification (XLM model) - contains `xlm`: TFXLMForSequenceClassification (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()` To train the model, you should first set it back in training mode with `model.train()`
...@@ -318,7 +325,10 @@ class TFAutoModelForSequenceClassification(object): ...@@ -318,7 +325,10 @@ class TFAutoModelForSequenceClassification(object):
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
from_pt: (`Optional`) Boolean
Set to True if the Checkpoint is a PyTorch checkpoint.
model_args: (`optional`) Sequence of positional arguments: model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method All remaning positional arguments will be passed to the underlying model's ``__init__`` method
...@@ -363,19 +373,19 @@ class TFAutoModelForSequenceClassification(object): ...@@ -363,19 +373,19 @@ class TFAutoModelForSequenceClassification(object):
assert model.config.output_attention == True assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower) # Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = TFAutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) model = TFAutoModelForSequenceClassification.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
""" """
if 'distilbert' in pretrained_model_name_or_path: if 'distilbert' in pretrained_model_name_or_path:
raise NotImplementedError return TFDistilBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'roberta' in pretrained_model_name_or_path: elif 'roberta' in pretrained_model_name_or_path:
raise NotImplementedError return TFRobertaForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path: elif 'bert' in pretrained_model_name_or_path:
return TFBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return TFBertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path: elif 'xlnet' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLNetForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path: elif 'xlm' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of " raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path)) "'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path))
...@@ -393,10 +403,10 @@ class TFAutoModelForQuestionAnswering(object): ...@@ -393,10 +403,10 @@ class TFAutoModelForQuestionAnswering(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForQuestionAnswering (DistilBERT model) - contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
- contains `bert`: TFBertForQuestionAnswering (Bert model) - contains `bert`: TFBertForQuestionAnswering (Bert model)
- contains `xlnet`: XLNetForQuestionAnswering (XLNet model) - contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model)
- contains `xlm`: XLMForQuestionAnswering (XLM model) - contains `xlm`: TFXLMForQuestionAnswering (XLM model)
This class cannot be instantiated using `__init__()` (throws an error). This class cannot be instantiated using `__init__()` (throws an error).
""" """
...@@ -414,10 +424,10 @@ class TFAutoModelForQuestionAnswering(object): ...@@ -414,10 +424,10 @@ class TFAutoModelForQuestionAnswering(object):
The model class to instantiate is selected as the first pattern matching The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertForQuestionAnswering (DistilBERT model) - contains `distilbert`: TFDistilBertForQuestionAnswering (DistilBERT model)
- contains `bert`: TFBertForQuestionAnswering (Bert model) - contains `bert`: TFBertForQuestionAnswering (Bert model)
- contains `xlnet`: XLNetForQuestionAnswering (XLNet model) - contains `xlnet`: TFXLNetForQuestionAnswering (XLNet model)
- contains `xlm`: XLMForQuestionAnswering (XLM model) - contains `xlm`: TFXLMForQuestionAnswering (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated) The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()` To train the model, you should first set it back in training mode with `model.train()`
...@@ -427,7 +437,10 @@ class TFAutoModelForQuestionAnswering(object): ...@@ -427,7 +437,10 @@ class TFAutoModelForQuestionAnswering(object):
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. - a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
from_pt: (`Optional`) Boolean
Set to True if the Checkpoint is a PyTorch checkpoint.
model_args: (`optional`) Sequence of positional arguments: model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method All remaning positional arguments will be passed to the underlying model's ``__init__`` method
...@@ -472,17 +485,17 @@ class TFAutoModelForQuestionAnswering(object): ...@@ -472,17 +485,17 @@ class TFAutoModelForQuestionAnswering(object):
assert model.config.output_attention == True assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower) # Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json') config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = TFAutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config) model = TFAutoModelForQuestionAnswering.from_pretrained('./pt_model/bert_pytorch_model.bin', from_pt=True, config=config)
""" """
if 'distilbert' in pretrained_model_name_or_path: if 'distilbert' in pretrained_model_name_or_path:
raise NotImplementedError return TFDistilBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path: elif 'bert' in pretrained_model_name_or_path:
return TFBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) return TFBertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path: elif 'xlnet' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLNetForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path: elif 'xlm' in pretrained_model_name_or_path:
raise NotImplementedError return TFXLMForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of " raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path)) "'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment