Unverified Commit dcff504e authored by Juyoung Kim's avatar Juyoung Kim Committed by GitHub
Browse files

fixed docstring typos (#18739)



* fixed docstring typos

* Added missing colon
Co-authored-by: default avatar김주영 <juyoung@zezedu.com>
parent e49c71fc
......@@ -94,7 +94,7 @@ class ProphetNetTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
......
......@@ -49,7 +49,7 @@ RAG_CONFIG_DOC = r"""
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path: (`str`, *optional*):
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
......
......@@ -132,7 +132,7 @@ class RealmTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
......
......@@ -103,7 +103,7 @@ class RoFormerTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
......
......@@ -143,7 +143,7 @@ SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
into a tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`]
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
......
......@@ -70,10 +70,10 @@ class Speech2TextConfig(PretrainedConfig):
The dropout ratio for classifier.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
......
......@@ -64,14 +64,15 @@ class Speech2Text2Config(PretrainedConfig):
The dropout ratio for classifier.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
https://arxiv.org/abs/1909.11556>`__ for more details. decoder_layerdrop: (`float`, *optional*, defaults to
0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see
https://arxiv.org/abs/1909.11556) for more details.
https://arxiv.org/abs/1909.11556>`__ for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
max_source_positions (`int`, *optional*, defaults to 6000):
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
max_target_positions: (`int`, *optional*, defaults to 1024):
max_target_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
......
......@@ -111,7 +111,7 @@ class SplinterTokenizer(PreTrainedTokenizer):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
......@@ -340,7 +340,7 @@ class BasicTokenizer(object):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
......
......@@ -87,10 +87,10 @@ class SplinterTokenizerFast(PreTrainedTokenizerFast):
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
wordpieces_prefix: (`str`, *optional*, defaults to `"##"`):
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
The prefix for subwords.
"""
......
......@@ -1008,14 +1008,14 @@ T5_INPUTS_DOCSTRING = r"""
decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask: (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask: (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
decoder_head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
......@@ -1084,7 +1084,7 @@ T5_ENCODER_INPUTS_DOCSTRING = r"""
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
head_mask: (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
......
......@@ -293,7 +293,7 @@ class TapasTokenizer(PreTrainedTokenizer):
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
cell_trim_length (`int`, *optional*, defaults to -1):
......@@ -2053,7 +2053,7 @@ class BasicTokenizer(object):
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents: (`bool`, *optional*):
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
"""
......
......@@ -67,7 +67,7 @@ class TrOCRConfig(PretrainedConfig):
The dropout ratio for classifier.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
......
......@@ -136,7 +136,7 @@ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
......
......@@ -137,7 +137,7 @@ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r"""
more detail.
return_dict (`bool`, *optional*):
If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple.
kwargs: (*optional*) Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors:
- Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function.
- With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function.
......
......@@ -61,7 +61,7 @@ class XGLMConfig(PretrainedConfig):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
layerdrop: (`float`, *optional*, defaults to 0.0):
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
init_std (`float`, *optional*, defaults to 0.02):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment