Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
dc894411
Commit
dc894411
authored
Oct 07, 2019
by
thomwolf
Browse files
update CTRL pytorch model
parent
320b7a7e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
246 additions
and
161 deletions
+246
-161
transformers/modeling_ctrl.py
transformers/modeling_ctrl.py
+246
-161
No files found.
transformers/modeling_ctrl.py
View file @
dc894411
...
...
@@ -13,7 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch CTRL model."""
"""
PyTorch CTRL model."""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
...
...
@@ -27,7 +27,6 @@ from io import open
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
pdb
from
torch.nn
import
CrossEntropyLoss
from
torch.nn.parameter
import
Parameter
...
...
@@ -41,148 +40,168 @@ CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://storage.googleapis.com/sf-
def
angle_defn
(
pos
,
i
,
d_model_size
):
angle_rates
=
1
/
torch
.
pow
(
10000
,
(
2
*
(
i
//
2
))
/
d_model_size
)
return
pos
*
angle_rates
angle_rates
=
1
/
torch
.
pow
(
10000
,
(
2
*
(
i
//
2
))
/
d_model_size
)
return
pos
*
angle_rates
def
positional_encoding
(
position
,
d_model_size
,
dtype
):
# create the sinusoidal pattern for the positional encoding
angle_rads
=
(
angle_defn
(
torch
.
arange
(
position
,
dtype
=
dtype
).
unsqueeze
(
1
),
torch
.
arange
(
d_model_size
,
dtype
=
dtype
).
unsqueeze
(
0
),
d_model_size
))
sines
=
torch
.
sin
(
angle_rads
[:,
0
::
2
])
cosines
=
torch
.
cos
(
angle_rads
[:,
1
::
2
])
pos_encoding
=
torch
.
cat
([
sines
,
cosines
],
dim
=-
1
).
unsqueeze
(
0
)
return
pos_encoding
def
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
):
# calculate attention
matmul_qk
=
torch
.
matmul
(
q
,
k
.
permute
(
0
,
1
,
3
,
2
))
dk
=
k
.
shape
[
-
1
]
scaled_attention_logits
=
matmul_qk
/
np
.
sqrt
(
dk
)
if
mask
is
not
None
:
scaled_attention_logits
+=
(
mask
*
-
1e4
)
attention_weights
=
torch
.
softmax
(
scaled_attention_logits
,
dim
=-
1
)
output
=
torch
.
matmul
(
attention_weights
,
v
)
return
output
,
attention_weights
# create the sinusoidal pattern for the positional encoding
angle_rads
=
(
angle_defn
(
torch
.
arange
(
position
,
dtype
=
dtype
).
unsqueeze
(
1
),
torch
.
arange
(
d_model_size
,
dtype
=
dtype
).
unsqueeze
(
0
),
d_model_size
))
sines
=
torch
.
sin
(
angle_rads
[:,
0
::
2
])
cosines
=
torch
.
cos
(
angle_rads
[:,
1
::
2
])
pos_encoding
=
torch
.
cat
([
sines
,
cosines
],
dim
=-
1
).
unsqueeze
(
0
)
return
pos_encoding
def
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
=
None
,
head_mask
=
None
):
# calculate attention
matmul_qk
=
torch
.
matmul
(
q
,
k
.
permute
(
0
,
1
,
3
,
2
))
dk
=
k
.
shape
[
-
1
]
scaled_attention_logits
=
matmul_qk
/
np
.
sqrt
(
dk
)
if
mask
is
not
None
:
scaled_attention_logits
+=
(
mask
*
-
1e4
)
if
attention_mask
is
not
None
:
# Apply the attention mask
scaled_attention_logits
=
scaled_attention_logits
+
attention_mask
attention_weights
=
torch
.
softmax
(
scaled_attention_logits
,
dim
=-
1
)
# Mask heads if we want to
if
head_mask
is
not
None
:
attention_weights
=
attention_weights
*
head_mask
output
=
torch
.
matmul
(
attention_weights
,
v
)
return
output
,
attention_weights
class
MultiHeadAttention
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
d_model_size
,
num_heads
):
super
(
MultiHeadAttention
,
self
).
__init__
()
self
.
num_heads
=
num_heads
self
.
d_model_size
=
d_model_size
self
.
depth
=
int
(
d_model_size
/
self
.
num_heads
)
self
.
Wq
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wk
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wv
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
dense
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
def
split_into_heads
(
self
,
x
,
batch_size
):
x
=
x
.
reshape
(
batch_size
,
-
1
,
self
.
num_heads
,
self
.
depth
)
return
x
.
permute
([
0
,
2
,
1
,
3
])
def
forward
(
self
,
v
,
k
,
q
,
mask
):
batch_size
=
q
.
shape
[
0
]
q
=
self
.
Wq
(
q
)
k
=
self
.
Wk
(
k
)
v
=
self
.
Wv
(
v
)
q
=
self
.
split_into_heads
(
q
,
batch_size
)
k
=
self
.
split_into_heads
(
k
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
)
scaled_attention
=
output
[
0
].
permute
([
0
,
2
,
1
,
3
])
attn
=
output
[
1
]
original_size_attention
=
scaled_attention
.
reshape
(
batch_size
,
-
1
,
self
.
d_model_size
)
output
=
self
.
dense
(
original_size_attention
)
return
output
,
attn
def
__init__
(
self
,
d_model_size
,
num_heads
,
output_attentions
=
False
):
super
(
MultiHeadAttention
,
self
).
__init__
()
self
.
output_attentions
=
output_attentions
self
.
num_heads
=
num_heads
self
.
d_model_size
=
d_model_size
self
.
depth
=
int
(
d_model_size
/
self
.
num_heads
)
self
.
Wq
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wk
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wv
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
dense
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
def
split_into_heads
(
self
,
x
,
batch_size
):
x
=
x
.
reshape
(
batch_size
,
-
1
,
self
.
num_heads
,
self
.
depth
)
return
x
.
permute
([
0
,
2
,
1
,
3
])
def
forward
(
self
,
v
,
k
,
q
,
mask
,
layer_past
=
None
,
attention_mask
=
None
,
head_mask
=
None
):
batch_size
=
q
.
shape
[
0
]
q
=
self
.
Wq
(
q
)
k
=
self
.
Wk
(
k
)
v
=
self
.
Wv
(
v
)
q
=
self
.
split_into_heads
(
q
,
batch_size
)
k
=
self
.
split_into_heads
(
k
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
if
layer_past
is
not
None
:
past_key
,
past_value
=
layer_past
[
0
].
transpose
(
-
2
,
-
1
),
layer_past
[
1
]
# transpose back cf below
k
=
torch
.
cat
((
past_key
,
k
),
dim
=-
1
)
v
=
torch
.
cat
((
past_value
,
v
),
dim
=-
2
)
present
=
torch
.
stack
((
k
.
transpose
(
-
2
,
-
1
),
v
))
# transpose to have same shapes for stacking
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
,
head_mask
,
output_attentions
)
scaled_attention
=
output
[
0
].
permute
([
0
,
2
,
1
,
3
])
attn
=
output
[
1
]
original_size_attention
=
scaled_attention
.
reshape
(
batch_size
,
-
1
,
self
.
d_model_size
)
output
=
self
.
dense
(
original_size_attention
)
return
output
,
attn
def
point_wise_feed_forward_network
(
d_model_size
,
dff
):
return
torch
.
nn
.
Sequential
(
torch
.
nn
.
Linear
(
d_model_size
,
dff
),
torch
.
nn
.
ReLU
(),
torch
.
nn
.
Linear
(
dff
,
d_model_size
))
return
torch
.
nn
.
Sequential
(
torch
.
nn
.
Linear
(
d_model_size
,
dff
),
torch
.
nn
.
ReLU
(),
torch
.
nn
.
Linear
(
dff
,
d_model_size
))
class
EncoderLayer
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
d_model_size
,
num_heads
,
dff
,
rate
=
0.1
):
super
(
EncoderLayer
,
self
).
__init__
()
self
.
multi_head_attention
=
MultiHeadAttention
(
d_model_size
,
num_heads
)
self
.
ffn
=
point_wise_feed_forward_network
(
d_model_size
,
dff
)
self
.
layernorm1
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
layernorm2
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
dropout1
=
torch
.
nn
.
Dropout
(
rate
)
self
.
dropout2
=
torch
.
nn
.
Dropout
(
rate
)
def
forward
(
self
,
x
,
mask
):
normed
=
self
.
layernorm1
(
x
)
attn_output
,
attn
=
self
.
multi_head_attention
(
normed
,
normed
,
normed
,
mask
)
attn_output
=
self
.
dropout1
(
attn_output
)
out1
=
x
+
attn_output
out2
=
self
.
layernorm2
(
out1
)
ffn_output
=
self
.
ffn
(
out2
)
ffn_output
=
self
.
dropout2
(
ffn_output
)
out2
=
out1
+
ffn_output
return
out2
,
attn
def
__init__
(
self
,
d_model_size
,
num_heads
,
dff
,
rate
=
0.1
,
output_attentions
=
False
):
super
(
EncoderLayer
,
self
).
__init__
()
self
.
multi_head_attention
=
MultiHeadAttention
(
d_model_size
,
num_heads
,
output_attentions
)
self
.
ffn
=
point_wise_feed_forward_network
(
d_model_size
,
dff
)
class
CTRLPreTrainedModel
(
PreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class
=
CTRLConfig
pretrained_model_archive_map
=
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix
=
"transformer"
self
.
layernorm1
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
layernorm2
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
dropout1
=
torch
.
nn
.
Dropout
(
rate
)
self
.
dropout2
=
torch
.
nn
.
Dropout
(
rate
)
def
__init__
(
self
,
*
inputs
,
**
kwargs
):
super
(
CTRLPreTrainedModel
,
self
).
__init__
(
*
inputs
,
**
kwargs
)
def
forward
(
self
,
x
,
mask
,
layer_past
=
None
,
attention_mask
=
None
,
head_mask
=
None
):
normed
=
self
.
layernorm1
(
x
)
attn_output
,
attn
=
self
.
multi_head_attention
(
normed
,
normed
,
normed
,
mask
,
layer_past
=
layer_past
,
attention_mask
=
attention_mask
,
head_mask
=
head_mask
)
attn_output
=
self
.
dropout1
(
attn_output
)
out1
=
x
+
attn_output
def
_init_weights
(
self
,
module
):
""" Initialize the weights.
out2
=
self
.
layernorm2
(
out1
)
ffn_output
=
self
.
ffn
(
out2
)
ffn_output
=
self
.
dropout2
(
ffn_output
)
out2
=
out1
+
ffn_output
return
out2
,
attn
class
CTRLPreTrainedModel
(
PreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
if
isinstance
(
module
,
(
nn
.
Linear
,
nn
.
Embedding
,
Conv1D
)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
self
.
config
.
initializer_range
)
if
isinstance
(
module
,
(
nn
.
Linear
,
Conv1D
))
and
module
.
bias
is
not
None
:
config_class
=
CTRLConfig
pretrained_model_archive_map
=
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix
=
"transformer"
def
_init_weights
(
self
,
module
):
""" Initialize the weights.
"""
if
isinstance
(
module
,
(
nn
.
Linear
,
nn
.
Embedding
,
Conv1D
)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
self
.
config
.
initializer_range
)
if
isinstance
(
module
,
(
nn
.
Linear
,
Conv1D
))
and
module
.
bias
is
not
None
:
module
.
bias
.
data
.
zero_
()
elif
isinstance
(
module
,
nn
.
LayerNorm
):
module
.
bias
.
data
.
zero_
()
elif
isinstance
(
module
,
nn
.
LayerNorm
):
module
.
bias
.
data
.
zero_
()
module
.
weight
.
data
.
fill_
(
1.0
)
module
.
weight
.
data
.
fill_
(
1.0
)
CTRL_START_DOCSTRING
=
r
""" CTRL model was proposed in
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
https://www.github.com/salesforce/ctrl
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
https://www.github.com/salesforce/ctrl
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
Parameters:
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
CTRL_INPUTS_DOCSTRING
=
r
""" Inputs:
...
...
@@ -215,7 +234,7 @@ CTRL_INPUTS_DOCSTRING = r""" Inputs:
"""
@
add_start_docstrings
(
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top."
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
class
CTRLModel
(
CTRLPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
...
...
@@ -249,14 +268,18 @@ class CTRLModel(CTRLPreTrainedModel):
self
.
num_layers
=
config
.
n_layer
self
.
pos_encoding
=
positional_encoding
(
config
.
n_positions
,
self
.
d_model_size
,
torch
.
float
)
self
.
output_attentions
=
config
.
output_attentions
self
.
w
=
nn
.
Embedding
(
config
.
vocab_size
,
config
.
n_embd
)
self
.
dropout
=
nn
.
Dropout
(
config
.
embd_pdrop
)
self
.
h
=
nn
.
ModuleList
([
EncoderLayer
(
config
.
n_embd
,
config
.
n_head
,
config
.
dff
,
config
.
resid_pdrop
)
for
_
in
range
(
config
.
n_layer
)])
self
.
h
=
nn
.
ModuleList
([
EncoderLayer
(
config
.
n_embd
,
config
.
n_head
,
config
.
dff
,
config
.
resid_pdrop
,
config
.
output_attentions
)
for
_
in
range
(
config
.
n_layer
)])
self
.
layernorm
=
nn
.
LayerNorm
(
config
.
n_embd
,
eps
=
config
.
layer_norm_epsilon
)
self
.
init_weights
()
...
...
@@ -267,44 +290,104 @@ class CTRLModel(CTRLPreTrainedModel):
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
h
[
layer
].
attn
.
prune_heads
(
heads
)
def
forward
(
self
,
input_ids
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
labels
=
None
):
embedded
=
self
.
w
(
input_ids
)
x
=
embedded
.
unsqueeze
(
0
)
if
len
(
input_ids
.
shape
)
<
2
else
embedded
seq_len
=
input_ids
.
shape
[
1
]
mask
=
torch
.
triu
(
torch
.
ones
(
seq_len
,
seq_len
),
1
).
to
(
x
.
device
)
x
*=
np
.
sqrt
(
self
.
d_model_size
)
x
+=
self
.
pos_encoding
[:,
:
seq_len
,
:].
to
(
x
.
device
)
x
=
self
.
dropout
(
x
)
all_hidden_states
=
()
all_attentions
=
[]
for
i
in
range
(
self
.
num_layers
):
def
forward
(
self
,
input_ids
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
):
input_shape
=
input_ids
.
size
()
input_ids
=
input_ids
.
view
(
-
1
,
input_shape
[
-
1
])
if
token_type_ids
is
not
None
:
token_type_ids
=
token_type_ids
.
view
(
-
1
,
input_shape
[
-
1
])
if
position_ids
is
not
None
:
position_ids
=
position_ids
.
view
(
-
1
,
input_shape
[
-
1
])
if
past
is
None
:
past_length
=
0
past
=
[
None
]
*
len
(
self
.
h
)
else
:
past_length
=
past
[
0
][
0
].
size
(
-
2
)
if
position_ids
is
None
:
position_ids
=
torch
.
arange
(
past_length
,
input_ids
.
size
(
-
1
)
+
past_length
,
dtype
=
torch
.
long
,
device
=
input_ids
.
device
)
position_ids
=
position_ids
.
unsqueeze
(
0
).
expand_as
(
input_ids
)
# Attention mask.
if
attention_mask
is
not
None
:
attention_mask
=
attention_mask
.
view
(
-
1
,
input_shape
[
-
1
])
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask
=
attention_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask
=
attention_mask
.
to
(
dtype
=
next
(
self
.
parameters
()).
dtype
)
# fp16 compatibility
attention_mask
=
(
1.0
-
attention_mask
)
*
-
10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
if
head_mask
is
not
None
:
if
head_mask
.
dim
()
==
1
:
head_mask
=
head_mask
.
unsqueeze
(
0
).
unsqueeze
(
0
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
head_mask
=
head_mask
.
expand
(
self
.
config
.
n_layer
,
-
1
,
-
1
,
-
1
,
-
1
)
elif
head_mask
.
dim
()
==
2
:
head_mask
=
head_mask
.
unsqueeze
(
1
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
# We can specify head_mask for each layer
head_mask
=
head_mask
.
to
(
dtype
=
next
(
self
.
parameters
()).
dtype
)
# switch to fload if need + fp16 compatibility
else
:
head_mask
=
[
None
]
*
self
.
config
.
n_layer
embedded
=
self
.
w
(
input_ids
)
x
=
embedded
.
unsqueeze
(
0
)
if
len
(
input_ids
.
shape
)
<
2
else
embedded
seq_len
=
input_ids
.
shape
[
1
]
mask
=
torch
.
triu
(
torch
.
ones
(
seq_len
,
seq_len
),
1
).
to
(
x
.
device
)
x
*=
np
.
sqrt
(
self
.
d_model_size
)
x
+=
self
.
pos_encoding
[:,
position_ids
,
:].
to
(
x
.
device
)
x
=
self
.
dropout
(
x
)
output_shape
=
input_shape
+
(
x
.
size
(
-
1
),)
presents
=
()
all_hidden_states
=
()
all_attentions
=
[]
for
i
,
(
h
,
layer_past
)
in
enumerate
(
zip
(
self
.
h
,
past
)):
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
x
.
view
(
*
output_shape
),)
outputs
=
h
(
x
,
mask
,
layer_past
=
layer_past
,
attention_mask
=
attention_mask
,
head_mask
=
head_mask
[
i
])
x
,
present
=
outputs
[:
2
]
presents
=
presents
+
(
present
,)
if
self
.
output_attentions
:
all_attentions
.
append
(
outputs
[
2
])
x
=
self
.
layernorm
(
x
)
x
=
x
.
view
(
*
output_shape
)
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
x
,)
x
,
attn
=
self
.
h
[
i
](
x
,
mask
)
if
self
.
output_attentions
:
all_attentions
.
append
(
attn
)
all_hidden_states
=
all_hidden_states
+
(
x
,)
x
=
self
.
layernorm
(
x
)
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
x
,)
outputs
=
(
x
,
presents
)
if
self
.
output_hidden_states
:
outputs
=
outputs
+
(
all_hidden_states
,)
if
self
.
output_attentions
:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape
=
input_shape
[:
-
1
]
+
(
-
1
,)
+
all_attentions
[
0
].
shape
[
-
2
:]
all_attentions
=
tuple
(
t
.
view
(
*
attention_output_shape
)
for
t
in
all_attentions
)
outputs
=
outputs
+
(
all_attentions
,)
return
outputs
outputs
=
(
x
,
None
)
if
self
.
output_hidden_states
:
outputs
=
outputs
+
(
all_hidden_states
,)
if
self
.
output_attentions
:
outputs
=
outputs
+
(
all_attentions
,)
return
outputs
@
add_start_docstrings
(
"""The CTRL Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
...
...
@@ -357,15 +440,19 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self
.
_tie_or_clone_weights
(
self
.
lm_head
,
self
.
transformer
.
w
)
#self._tie_or_clone_weights(self.lm_head.bias,
# self.transformer.w.bias)
self
.
_tie_or_clone_weights
(
self
.
lm_head
,
self
.
transformer
.
w
)
def
forward
(
self
,
input_ids
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
labels
=
None
):
transformer_outputs
=
self
.
transformer
(
input_ids
)
transformer_outputs
=
self
.
transformer
(
input_ids
,
past
=
past
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
position_ids
=
position_ids
,
head_mask
=
head_mask
)
hidden_states
=
transformer_outputs
[
0
]
lm_logits
=
self
.
lm_head
(
hidden_states
)
...
...
@@ -383,5 +470,3 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
outputs
=
(
loss
,)
+
outputs
return
outputs
# (loss), lm_logits, presents, (all hidden_states), (attentions)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment