Unverified Commit dad5ca83 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

TF: Finalize `unpack_inputs`-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
parent be9474bd
...@@ -706,7 +706,6 @@ class TFLayoutLMMainLayer(tf.keras.layers.Layer): ...@@ -706,7 +706,6 @@ class TFLayoutLMMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -928,7 +927,6 @@ class TFLayoutLMModel(TFLayoutLMPreTrainedModel): ...@@ -928,7 +927,6 @@ class TFLayoutLMModel(TFLayoutLMPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
...@@ -1048,7 +1046,6 @@ class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingL ...@@ -1048,7 +1046,6 @@ class TFLayoutLMForMaskedLM(TFLayoutLMPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1172,7 +1169,6 @@ class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceC ...@@ -1172,7 +1169,6 @@ class TFLayoutLMForSequenceClassification(TFLayoutLMPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
...@@ -1303,7 +1299,6 @@ class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassif ...@@ -1303,7 +1299,6 @@ class TFLayoutLMForTokenClassification(TFLayoutLMPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -1666,7 +1666,6 @@ class TFLEDEncoder(tf.keras.layers.Layer): ...@@ -1666,7 +1666,6 @@ class TFLEDEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
...@@ -1911,7 +1910,6 @@ class TFLEDDecoder(tf.keras.layers.Layer): ...@@ -1911,7 +1910,6 @@ class TFLEDDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
...@@ -2333,7 +2331,6 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): ...@@ -2333,7 +2331,6 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
""" """
Returns: Returns:
...@@ -2429,7 +2426,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): ...@@ -2429,7 +2426,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
decoder_head_mask=None, decoder_head_mask=None,
use_cache=None, use_cache=None,
encoder_outputs=None, encoder_outputs=None,
**kwargs, **kwargs
): ):
# cut decoder_input_ids if past is used # cut decoder_input_ids if past is used
if past is not None: if past is not None:
......
...@@ -1676,7 +1676,6 @@ class TFLongformerMainLayer(tf.keras.layers.Layer): ...@@ -1676,7 +1676,6 @@ class TFLongformerMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -2023,7 +2022,6 @@ class TFLongformerModel(TFLongformerPreTrainedModel): ...@@ -2023,7 +2022,6 @@ class TFLongformerModel(TFLongformerPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.longformer( outputs = self.longformer(
...@@ -2100,7 +2098,6 @@ class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModel ...@@ -2100,7 +2098,6 @@ class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModel
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -2194,7 +2191,6 @@ class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAn ...@@ -2194,7 +2191,6 @@ class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAn
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -2340,7 +2336,6 @@ class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSeque ...@@ -2340,7 +2336,6 @@ class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSeque
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]:
if global_attention_mask is None and input_ids is not None: if global_attention_mask is None and input_ids is not None:
...@@ -2450,7 +2445,6 @@ class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoic ...@@ -2450,7 +2445,6 @@ class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoic
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -2580,7 +2574,6 @@ class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenCla ...@@ -2580,7 +2574,6 @@ class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.array, tf.Tensor]] = None, labels: Optional[Union[np.array, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -685,7 +685,6 @@ class TFLxmertMainLayer(tf.keras.layers.Layer): ...@@ -685,7 +685,6 @@ class TFLxmertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -946,7 +945,6 @@ class TFLxmertModel(TFLxmertPreTrainedModel): ...@@ -946,7 +945,6 @@ class TFLxmertModel(TFLxmertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.lxmert( outputs = self.lxmert(
input_ids, input_ids,
...@@ -1282,7 +1280,6 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel): ...@@ -1282,7 +1280,6 @@ class TFLxmertForPreTraining(TFLxmertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): masked_lm_labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -707,7 +707,6 @@ class TFMarianEncoder(tf.keras.layers.Layer): ...@@ -707,7 +707,6 @@ class TFMarianEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
...@@ -866,7 +865,6 @@ class TFMarianDecoder(tf.keras.layers.Layer): ...@@ -866,7 +865,6 @@ class TFMarianDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
...@@ -1296,7 +1294,6 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -1296,7 +1294,6 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -684,7 +684,6 @@ class TFMBartEncoder(tf.keras.layers.Layer): ...@@ -684,7 +684,6 @@ class TFMBartEncoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
""" """
Args: Args:
...@@ -848,7 +847,6 @@ class TFMBartDecoder(tf.keras.layers.Layer): ...@@ -848,7 +847,6 @@ class TFMBartDecoder(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[ ) -> Union[
TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor] TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor]
]: ]:
...@@ -1278,7 +1276,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo ...@@ -1278,7 +1276,7 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
decoder_head_mask: Optional[tf.Tensor] = None, decoder_head_mask: Optional[tf.Tensor] = None,
cross_attn_head_mask: Optional[tf.Tensor] = None, cross_attn_head_mask: Optional[tf.Tensor] = None,
encoder_outputs: Optional[TFBaseModelOutput] = None, encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values: [Tuple[Tuple[tf.Tensor]]] = None, past_key_values: Tuple[Tuple[tf.Tensor]] = None,
inputs_embeds: Optional[tf.Tensor] = None, inputs_embeds: Optional[tf.Tensor] = None,
decoder_inputs_embeds: Optional[tf.Tensor] = None, decoder_inputs_embeds: Optional[tf.Tensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
...@@ -1287,7 +1285,6 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo ...@@ -1287,7 +1285,6 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[tf.Tensor] = None, labels: Optional[tf.Tensor] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]:
""" """
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -692,7 +692,6 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer): ...@@ -692,7 +692,6 @@ class TFMobileBertMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
...@@ -928,7 +927,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel): ...@@ -928,7 +927,6 @@ class TFMobileBertModel(TFMobileBertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.mobilebert( outputs = self.mobilebert(
input_ids=input_ids, input_ids=input_ids,
...@@ -993,7 +991,6 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): ...@@ -993,7 +991,6 @@ class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Return: Return:
...@@ -1092,7 +1089,6 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel ...@@ -1092,7 +1089,6 @@ class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModel
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1176,7 +1172,6 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS ...@@ -1176,7 +1172,6 @@ class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextS
return_dict=None, return_dict=None,
next_sentence_label=None, next_sentence_label=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Return: Return:
...@@ -1287,7 +1282,6 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque ...@@ -1287,7 +1282,6 @@ class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSeque
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1381,7 +1375,6 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn ...@@ -1381,7 +1375,6 @@ class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAn
start_positions=None, start_positions=None,
end_positions=None, end_positions=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1498,7 +1491,6 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic ...@@ -1498,7 +1491,6 @@ class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoic
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1626,7 +1618,6 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla ...@@ -1626,7 +1618,6 @@ class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenCla
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -497,7 +497,6 @@ class TFMPNetMainLayer(tf.keras.layers.Layer): ...@@ -497,7 +497,6 @@ class TFMPNetMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -686,7 +685,6 @@ class TFMPNetModel(TFMPNetPreTrainedModel): ...@@ -686,7 +685,6 @@ class TFMPNetModel(TFMPNetPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.mpnet( outputs = self.mpnet(
input_ids=input_ids, input_ids=input_ids,
...@@ -803,7 +801,6 @@ class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss): ...@@ -803,7 +801,6 @@ class TFMPNetForMaskedLM(TFMPNetPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -909,7 +906,6 @@ class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassif ...@@ -909,7 +906,6 @@ class TFMPNetForSequenceClassification(TFMPNetPreTrainedModel, TFSequenceClassif
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1000,7 +996,6 @@ class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss): ...@@ -1000,7 +996,6 @@ class TFMPNetForMultipleChoice(TFMPNetPreTrainedModel, TFMultipleChoiceLoss):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1112,7 +1107,6 @@ class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificatio ...@@ -1112,7 +1107,6 @@ class TFMPNetForTokenClassification(TFMPNetPreTrainedModel, TFTokenClassificatio
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -249,7 +249,6 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer): ...@@ -249,7 +249,6 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -522,7 +521,6 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): ...@@ -522,7 +521,6 @@ class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
outputs = self.transformer( outputs = self.transformer(
...@@ -586,7 +584,6 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin ...@@ -586,7 +584,6 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelin
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFCausalLMOutput]: ) -> Union[Tuple, TFCausalLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -669,7 +666,6 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): ...@@ -669,7 +666,6 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]: ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]:
r""" r"""
mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
...@@ -813,7 +809,6 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc ...@@ -813,7 +809,6 @@ class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSequenceClassifierOutput]: ) -> Union[Tuple, TFSequenceClassifierOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -710,7 +710,6 @@ class TFPegasusEncoder(tf.keras.layers.Layer): ...@@ -710,7 +710,6 @@ class TFPegasusEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
...@@ -872,7 +871,6 @@ class TFPegasusDecoder(tf.keras.layers.Layer): ...@@ -872,7 +871,6 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
...@@ -1305,7 +1303,6 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua ...@@ -1305,7 +1303,6 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
""" """
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -660,7 +660,6 @@ class TFRemBertMainLayer(tf.keras.layers.Layer): ...@@ -660,7 +660,6 @@ class TFRemBertMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
...@@ -959,7 +958,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel): ...@@ -959,7 +958,6 @@ class TFRemBertModel(TFRemBertPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
...@@ -1060,7 +1058,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos ...@@ -1060,7 +1058,6 @@ class TFRemBertForMaskedLM(TFRemBertPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1155,7 +1152,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos ...@@ -1155,7 +1152,6 @@ class TFRemBertForCausalLM(TFRemBertPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
...@@ -1283,7 +1279,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla ...@@ -1283,7 +1279,6 @@ class TFRemBertForSequenceClassification(TFRemBertPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
...@@ -1374,7 +1369,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1374,7 +1369,6 @@ class TFRemBertForMultipleChoice(TFRemBertPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
...@@ -1494,7 +1488,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific ...@@ -1494,7 +1488,6 @@ class TFRemBertForTokenClassification(TFRemBertPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1575,7 +1568,6 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin ...@@ -1575,7 +1568,6 @@ class TFRemBertForQuestionAnswering(TFRemBertPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
......
...@@ -624,7 +624,6 @@ class TFRobertaMainLayer(tf.keras.layers.Layer): ...@@ -624,7 +624,6 @@ class TFRobertaMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder: if not self.config.is_decoder:
...@@ -936,7 +935,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel): ...@@ -936,7 +935,6 @@ class TFRobertaModel(TFRobertaPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]: ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
...@@ -1093,7 +1091,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos ...@@ -1093,7 +1091,6 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1196,7 +1193,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos ...@@ -1196,7 +1193,6 @@ class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r""" r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
...@@ -1353,7 +1349,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla ...@@ -1353,7 +1349,6 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceCla
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1449,7 +1444,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss) ...@@ -1449,7 +1444,6 @@ class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss)
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
...@@ -1567,7 +1561,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific ...@@ -1567,7 +1561,6 @@ class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassific
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1655,7 +1648,6 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin ...@@ -1655,7 +1648,6 @@ class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnswerin
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
......
...@@ -614,7 +614,6 @@ class TFRoFormerMainLayer(tf.keras.layers.Layer): ...@@ -614,7 +614,6 @@ class TFRoFormerMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -817,7 +816,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel): ...@@ -817,7 +816,6 @@ class TFRoFormerModel(TFRoFormerPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
outputs = self.roformer( outputs = self.roformer(
input_ids=input_ids, input_ids=input_ids,
...@@ -877,7 +875,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL ...@@ -877,7 +875,6 @@ class TFRoFormerForMaskedLM(TFRoFormerPreTrainedModel, TFMaskedLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -953,7 +950,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL ...@@ -953,7 +950,6 @@ class TFRoFormerForCausalLM(TFRoFormerPreTrainedModel, TFCausalLanguageModelingL
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1064,7 +1060,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC ...@@ -1064,7 +1060,6 @@ class TFRoFormerForSequenceClassification(TFRoFormerPreTrainedModel, TFSequenceC
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
...@@ -1155,7 +1150,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos ...@@ -1155,7 +1150,6 @@ class TFRoFormerForMultipleChoice(TFRoFormerPreTrainedModel, TFMultipleChoiceLos
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
...@@ -1269,7 +1263,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif ...@@ -1269,7 +1263,6 @@ class TFRoFormerForTokenClassification(TFRoFormerPreTrainedModel, TFTokenClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1348,7 +1341,6 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer ...@@ -1348,7 +1341,6 @@ class TFRoFormerForQuestionAnswering(TFRoFormerPreTrainedModel, TFQuestionAnswer
start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, start_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None, end_positions: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r""" r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
......
...@@ -791,7 +791,6 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer): ...@@ -791,7 +791,6 @@ class TFSpeech2TextEncoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
""" """
Args: Args:
...@@ -957,7 +956,6 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer): ...@@ -957,7 +956,6 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
r""" r"""
Args: Args:
......
...@@ -654,7 +654,6 @@ class TFT5MainLayer(tf.keras.layers.Layer): ...@@ -654,7 +654,6 @@ class TFT5MainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
) -> Tuple: ) -> Tuple:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -1152,7 +1151,6 @@ class TFT5Model(TFT5PreTrainedModel): ...@@ -1152,7 +1151,6 @@ class TFT5Model(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqModelOutput]: ) -> Union[Tuple, TFSeq2SeqModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1329,7 +1327,6 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling ...@@ -1329,7 +1327,6 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFSeq2SeqLMOutput]: ) -> Union[Tuple, TFSeq2SeqLMOutput]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1611,6 +1608,10 @@ class TFT5EncoderModel(TFT5PreTrainedModel): ...@@ -1611,6 +1608,10 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
encoder_config.use_cache = False encoder_config.use_cache = False
self.encoder = TFT5MainLayer(encoder_config, embed_tokens, name="encoder") self.encoder = TFT5MainLayer(encoder_config, embed_tokens, name="encoder")
@property
def dummy_inputs(self):
return {"input_ids": tf.constant(DUMMY_INPUTS)}
def get_encoder(self): def get_encoder(self):
return self.encoder return self.encoder
...@@ -1627,7 +1628,6 @@ class TFT5EncoderModel(TFT5PreTrainedModel): ...@@ -1627,7 +1628,6 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFBaseModelOutput]: ) -> Union[Tuple, TFBaseModelOutput]:
r""" r"""
Returns: Returns:
...@@ -1670,6 +1670,19 @@ class TFT5EncoderModel(TFT5PreTrainedModel): ...@@ -1670,6 +1670,19 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
attentions=encoder_outputs.attentions, attentions=encoder_outputs.attentions,
) )
@tf.function(
input_signature=[
{
"input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"),
"attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"),
}
]
)
def serving(self, inputs):
output = self.call(inputs)
return self.serving_output(output)
# Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output
def serving_output(self, output): def serving_output(self, output):
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
......
...@@ -770,7 +770,6 @@ class TFTapasMainLayer(tf.keras.layers.Layer): ...@@ -770,7 +770,6 @@ class TFTapasMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None: if input_ids is not None and inputs_embeds is not None:
...@@ -980,7 +979,6 @@ class TFTapasModel(TFTapasPreTrainedModel): ...@@ -980,7 +979,6 @@ class TFTapasModel(TFTapasPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
...@@ -1067,7 +1065,6 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): ...@@ -1067,7 +1065,6 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
...@@ -1285,7 +1282,6 @@ class TFTapasForQuestionAnswering(TFTapasPreTrainedModel): ...@@ -1285,7 +1282,6 @@ class TFTapasForQuestionAnswering(TFTapasPreTrainedModel):
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]:
r""" r"""
table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*):
...@@ -1602,7 +1598,6 @@ class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassif ...@@ -1602,7 +1598,6 @@ class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassif
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
......
...@@ -550,7 +550,6 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer): ...@@ -550,7 +550,6 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
...@@ -898,7 +897,6 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel): ...@@ -898,7 +897,6 @@ class TFTransfoXLModel(TFTransfoXLPreTrainedModel):
output_hidden_states=None, output_hidden_states=None,
return_dict=None, return_dict=None,
training=False, training=False,
**kwargs,
): ):
outputs = self.transformer( outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,
...@@ -979,7 +977,6 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): ...@@ -979,7 +977,6 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
return_dict=None, return_dict=None,
labels=None, labels=None,
training=False, training=False,
**kwargs,
): ):
if input_ids is not None: if input_ids is not None:
bsz, tgt_len = shape_list(input_ids)[:2] bsz, tgt_len = shape_list(input_ids)[:2]
...@@ -1088,7 +1085,6 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc ...@@ -1088,7 +1085,6 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
r""" r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
......
...@@ -23,7 +23,7 @@ import tensorflow as tf ...@@ -23,7 +23,7 @@ import tensorflow as tf
from ...configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput
from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, input_processing from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, unpack_inputs
from ...tf_utils import shape_list from ...tf_utils import shape_list
from ...utils import ( from ...utils import (
DUMMY_INPUTS, DUMMY_INPUTS,
...@@ -510,6 +510,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos ...@@ -510,6 +510,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
return cls(encoder=encoder, decoder=decoder, config=config) return cls(encoder=encoder, decoder=decoder, config=config)
@unpack_inputs
@add_start_docstrings_to_model_forward( @add_start_docstrings_to_model_forward(
VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
) )
...@@ -585,21 +586,16 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos ...@@ -585,21 +586,16 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
if encoder_outputs is None: if encoder_outputs is None:
encoder_processing_inputs = { encoder_inputs = {
"func": self.encoder.call,
"config": self.encoder.config,
"input_ids": pixel_values, "input_ids": pixel_values,
"output_attentions": output_attentions, "output_attentions": output_attentions,
"output_hidden_states": output_hidden_states, "output_hidden_states": output_hidden_states,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to encoder from `kwargs_encoder` # Add arguments to encoder from `kwargs_encoder`
encoder_processing_inputs.update(kwargs_encoder) encoder_inputs.update(kwargs_encoder)
encoder_inputs = input_processing(**encoder_processing_inputs)
if "input_ids" in encoder_inputs: if "input_ids" in encoder_inputs:
encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids")
...@@ -639,9 +635,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos ...@@ -639,9 +635,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] batch_size, sequence_length = shape_list(encoder_hidden_states)[:2]
encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32)
decoder_processing_inputs = { decoder_inputs = {
"func": self.decoder.call,
"config": self.decoder.config,
"input_ids": decoder_input_ids, "input_ids": decoder_input_ids,
"attention_mask": decoder_attention_mask, "attention_mask": decoder_attention_mask,
"encoder_hidden_states": encoder_hidden_states, "encoder_hidden_states": encoder_hidden_states,
...@@ -653,13 +647,11 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos ...@@ -653,13 +647,11 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
"past_key_values": past_key_values, "past_key_values": past_key_values,
"return_dict": return_dict, "return_dict": return_dict,
"training": training, "training": training,
"kwargs_call": {},
} }
# Add arguments to decoder from `kwargs_decoder` # Add arguments to decoder from `kwargs_decoder`
decoder_processing_inputs.update(kwargs_decoder) decoder_inputs.update(kwargs_decoder)
decoder_inputs = input_processing(**decoder_processing_inputs)
decoder_outputs = self.decoder(**decoder_inputs) decoder_outputs = self.decoder(**decoder_inputs)
logits = decoder_outputs[0] logits = decoder_outputs[0]
......
...@@ -486,7 +486,6 @@ class TFViTMainLayer(tf.keras.layers.Layer): ...@@ -486,7 +486,6 @@ class TFViTMainLayer(tf.keras.layers.Layer):
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
if pixel_values is None: if pixel_values is None:
...@@ -656,7 +655,6 @@ class TFViTModel(TFViTPreTrainedModel): ...@@ -656,7 +655,6 @@ class TFViTModel(TFViTPreTrainedModel):
interpolate_pos_encoding: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
...@@ -757,7 +755,6 @@ class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassification ...@@ -757,7 +755,6 @@ class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassification
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None, labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False, training: Optional[bool] = False,
**kwargs,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r""" r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
......
...@@ -647,7 +647,6 @@ class TFViTMAEMainLayer(tf.keras.layers.Layer): ...@@ -647,7 +647,6 @@ class TFViTMAEMainLayer(tf.keras.layers.Layer):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
embedding_output, mask, ids_restore = self.embeddings( embedding_output, mask, ids_restore = self.embeddings(
pixel_values=pixel_values, training=training, noise=noise pixel_values=pixel_values, training=training, noise=noise
...@@ -811,7 +810,6 @@ class TFViTMAEModel(TFViTMAEPreTrainedModel): ...@@ -811,7 +810,6 @@ class TFViTMAEModel(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEModelOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
...@@ -1028,7 +1026,6 @@ class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel): ...@@ -1028,7 +1026,6 @@ class TFViTMAEForPreTraining(TFViTMAEPreTrainedModel):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
training: bool = False, training: bool = False,
**kwargs,
) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]: ) -> Union[TFViTMAEForPreTrainingOutput, Tuple[tf.Tensor]]:
r""" r"""
Returns: Returns:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment