Commit d9e60f4f authored by thomwolf's avatar thomwolf
Browse files

Merge branch 'master' into pr/1383

parents 07d055f8 1c507995
---
name: "\U0001F31FNew model addition"
about: Submit a proposal/request to implement a new Transformer-based model
title: ''
labels: ''
assignees: ''
---
# 🌟New model addition
## Model description
<!-- Important information -->
## Open Source status
* [ ] the model implementation is available: (give details)
* [ ] the model weights are available: (give details)
## Additional context
<!-- Add any other context about the problem here. -->
--- ---
name: "\U0001F41B Bug Report" name: "\U0001F41B Bug Report"
about: Submit a bug report to help us improve PyTorch Transformers about: Submit a bug report to help us improve PyTorch Transformers
title: ''
labels: ''
assignees: ''
--- ---
## 🐛 Bug ## 🐛 Bug
......
--- ---
name: "\U0001F680 Feature Request" name: "\U0001F680 Feature Request"
about: Submit a proposal/request for a new PyTorch Transformers feature about: Submit a proposal/request for a new PyTorch Transformers feature
title: ''
labels: ''
assignees: ''
--- ---
## 🚀 Feature ## 🚀 Feature
......
--- ---
name: "\U0001F4DA Migration from PyTorch-pretrained-Bert" name: "\U0001F4DA Migration from PyTorch-pretrained-Bert"
about: Report a problem when migrating from PyTorch-pretrained-Bert to Transformers about: Report a problem when migrating from PyTorch-pretrained-Bert to Transformers
title: ''
labels: ''
assignees: ''
--- ---
## 📚 Migration ## 📚 Migration
......
--- ---
name: "❓Questions & Help" name: "❓Questions & Help"
about: Start a general discussion related to PyTorch Transformers about: Start a general discussion related to PyTorch Transformers
title: ''
labels: ''
assignees: ''
--- ---
## ❓ Questions & Help ## ❓ Questions & Help
......
# How to contribute to transformers?
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
## You can contribute in so many ways!
There are 4 ways you can contribute to transformers:
* Fixing outstanding issues with the existing code;
* Implementing new models;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
*All are equally valuable to the community.*
## Submitting a new issue or feature request
Do your best to follow these guidelines when submitting an issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The transformers are robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Did not find it? :( So we can act quickly on it, please follow these steps:
* Include your **OS type and version**, the versions of **Python**, **PyTorch** and
**Tensorflow** when applicable;
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s;
* Provide the *full* traceback if an exception is raised.
To get the OS and software versions, execute the following code and copy-paste
the output:
```
import platform; print("Platform", platform.platform())
import sys; print("Python", sys.version)
import torch; print("PyTorch", torch.__version__)
import tensorflow; print("Tensorflow", tensorflow.__version__)
```
### Do you want to implement a new model?
Awesome! Please provide the following information:
* Short description of the model and link to the paper;
* Link to the implementation if it is open-source;
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can best
guide you.
### Do you want a new feature (that is not a model)?
A world-class feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
post it.
## Start contributing! (Pull Requests)
Before writing code, we strongly advise you to search through the exising PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
`transformers`. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your github user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your Github handle>/transformers.git
$ cd transformers
$ git remote add upstream git@github.com:huggingface/transformers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**do not** work on the `master` branch.
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -r requirements-dev.txt
```
5. Develop the features on your branch. Add changed files using `git add` and
then `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit
```
Please write [good commit
messages](https://chris.beams.io/posts/git-commit/). It
is a good idea to sync your copy of the code with the original repository
regularly. This way you can quickly account for changes:
```bash
$ git fetch upstream
$ git rebase upstream/master
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on Github. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request adresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
4. Make sure pre-existing tests still pass;
5. Add high-coverage tests. No quality test, no merge;
6. All public methods must have informative doctrings;
### Style guide
For documentation strings, `transformers` follows the [google
style](https://google.github.io/styleguide/pyguide.html).
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
...@@ -56,7 +56,7 @@ Choose the right framework for every part of a model's lifetime ...@@ -56,7 +56,7 @@ Choose the right framework for every part of a model's lifetime
| [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 | | [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
| [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch | | [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation | | [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers | | [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers | | [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and more | | [Documentation](https://huggingface.co/transformers/) | Full API documentation and more |
...@@ -67,7 +67,7 @@ This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3 ...@@ -67,7 +67,7 @@ This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3
### With pip ### With pip
First you need to install one of, or both, TensorFlow 2.0 and PyTorch. First you need to install one of, or both, TensorFlow 2.0 and PyTorch.
Please refere to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform. Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows: When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows:
...@@ -78,9 +78,9 @@ pip install transformers ...@@ -78,9 +78,9 @@ pip install transformers
### From source ### From source
Here also, you first need to install one of, or both, TensorFlow 2.0 and PyTorch. Here also, you first need to install one of, or both, TensorFlow 2.0 and PyTorch.
Please refere to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform. Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available) and/or [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform.
When TensorFlow 2.0 and/or PyTorch has been installed, you can install from source by cloning the repository and runing: When TensorFlow 2.0 and/or PyTorch has been installed, you can install from source by cloning the repository and running:
```bash ```bash
pip install [--editable] . pip install [--editable] .
...@@ -88,7 +88,7 @@ pip install [--editable] . ...@@ -88,7 +88,7 @@ pip install [--editable] .
### Tests ### Tests
A series of tests is included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples). A series of tests are included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
These tests can be run using `pytest` (install pytest if needed with `pip install pytest`). These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
...@@ -105,7 +105,7 @@ python -m pytest -sv ./examples/ ...@@ -105,7 +105,7 @@ python -m pytest -sv ./examples/
You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo. You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.
It contains an example of a conversion script from a Pytorch trained Transformer model (here, `GPT-2`) to a CoreML model that runs on iOS devices. It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting! At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting!
...@@ -120,8 +120,7 @@ At some point in the future, you'll be able to seamlessly move from pre-training ...@@ -120,8 +120,7 @@ At some point in the future, you'll be able to seamlessly move from pre-training
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the blogpost [Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5 8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation).
) by Victor Sanh, Lysandre Debut and Thomas Wolf.
9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html). These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
...@@ -182,24 +181,24 @@ for model_class in BERT_MODEL_CLASSES: ...@@ -182,24 +181,24 @@ for model_class in BERT_MODEL_CLASSES:
# Load pretrained model/tokenizer # Load pretrained model/tokenizer
model = model_class.from_pretrained('bert-base-uncased') model = model_class.from_pretrained('bert-base-uncased')
# Models can return full list of hidden-states & attentions weights at each layer # Models can return full list of hidden-states & attentions weights at each layer
model = model_class.from_pretrained(pretrained_weights, model = model_class.from_pretrained(pretrained_weights,
output_hidden_states=True, output_hidden_states=True,
output_attentions=True) output_attentions=True)
input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")]) input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
all_hidden_states, all_attentions = model(input_ids)[-2:] all_hidden_states, all_attentions = model(input_ids)[-2:]
# Models are compatible with Torchscript # Models are compatible with Torchscript
model = model_class.from_pretrained(pretrained_weights, torchscript=True) model = model_class.from_pretrained(pretrained_weights, torchscript=True)
traced_model = torch.jit.trace(model, (input_ids,)) traced_model = torch.jit.trace(model, (input_ids,))
# Simple serialization for models and tokenizers # Simple serialization for models and tokenizers
model.save_pretrained('./directory/to/save/') # save model.save_pretrained('./directory/to/save/') # save
model = model_class.from_pretrained('./directory/to/save/') # re-load model = model_class.from_pretrained('./directory/to/save/') # re-load
tokenizer.save_pretrained('./directory/to/save/') # save tokenizer.save_pretrained('./directory/to/save/') # save
tokenizer = tokenizer_class.from_pretrained('./directory/to/save/') # re-load tokenizer = BertTokenizer.from_pretrained('./directory/to/save/') # re-load
# SOTA examples for GLUE, SQUAD, text generation... # SOTA examples for GLUE, SQUAD, text generation...
``` ```
## Quick tour TF 2.0 training and PyTorch interoperability ## Quick tour TF 2.0 training and PyTorch interoperability
...@@ -396,7 +395,7 @@ This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-s ...@@ -396,7 +395,7 @@ This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-s
### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet ### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet
A conditional generation script is also included to generate text from a prompt. A conditional generation script is also included to generate text from a prompt.
The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer). The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high-quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
Here is how to run the script with the small version of OpenAI GPT-2 model: Here is how to run the script with the small version of OpenAI GPT-2 model:
...@@ -436,9 +435,9 @@ Here is a quick summary of what you should take care of when migrating from `pyt ...@@ -436,9 +435,9 @@ Here is a quick summary of what you should take care of when migrating from `pyt
### Models always output `tuples` ### Models always output `tuples`
The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters. The main breaking change when migrating from `pytorch-pretrained-bert` to `transformers` is that every model's forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.
The exact content of the tuples for each model are detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/). The exact content of the tuples for each model is detailed in the models' docstrings and the [documentation](https://huggingface.co/transformers/).
In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`. In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.
...@@ -470,11 +469,11 @@ By enabling the configuration option `output_hidden_states`, it was possible to ...@@ -470,11 +469,11 @@ By enabling the configuration option `output_hidden_states`, it was possible to
### Serialization ### Serialization
Breaking change in the `from_pretrained()`method: Breaking change in the `from_pretrained()` method:
1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules. 1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them, don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.
2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead which can break derived model classes build based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes. 2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead, which can break derived model classes built based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/transformers/pull/866) by forwarding the the model's `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuration class attributes.
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before. Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
...@@ -546,4 +545,4 @@ for batch in train_data: ...@@ -546,4 +545,4 @@ for batch in train_data:
## Citation ## Citation
At the moment, there is no paper associated to Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project. At the moment, there is no paper associated with Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project.
...@@ -50,7 +50,7 @@ make html ...@@ -50,7 +50,7 @@ make html
--- ---
**NOTE** **NOTE**
If you are adding/removing elements from the toc-tree or from any strutural item, it is recommended to clean the build If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build
directory before rebuilding. Run the following command to clean and build: directory before rebuilding. Run the following command to clean and build:
```bash ```bash
......
huggingface.css
/* The literal code blocks */ /* The literal code blocks */
.rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal { .rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal {
color: #6670FF; color: #6670FF;
...@@ -44,11 +42,11 @@ huggingface.css ...@@ -44,11 +42,11 @@ huggingface.css
/* The text items on the toc tree */ /* The text items on the toc tree */
.wy-menu-vertical a { .wy-menu-vertical a {
color: #FFFFDD; color: #FFFFDD;
font-family: Calibre-Light; font-family: Calibre-Light, sans-serif;
} }
.wy-menu-vertical header, .wy-menu-vertical p.caption{ .wy-menu-vertical header, .wy-menu-vertical p.caption{
color: white; color: white;
font-family: Calibre-Light; font-family: Calibre-Light, sans-serif;
} }
/* The color inside the selected toc tree block */ /* The color inside the selected toc tree block */
...@@ -85,7 +83,7 @@ a { ...@@ -85,7 +83,7 @@ a {
border-right: solid 2px #FB8D68; border-right: solid 2px #FB8D68;
border-left: solid 2px #FB8D68; border-left: solid 2px #FB8D68;
color: #FB8D68; color: #FB8D68;
font-family: Calibre-Light; font-family: Calibre-Light, sans-serif;
border-top: none; border-top: none;
font-style: normal !important; font-style: normal !important;
} }
...@@ -136,14 +134,14 @@ a { ...@@ -136,14 +134,14 @@ a {
/* class and method names in doc */ /* class and method names in doc */
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{ .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{
font-family: Calibre; font-family: Calibre, sans-serif;
font-size: 20px !important; font-size: 20px !important;
} }
/* class name in doc*/ /* class name in doc*/
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{ .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{
margin-right: 10px; margin-right: 10px;
font-family: Calibre-Medium; font-family: Calibre-Medium, sans-serif;
} }
/* Method and class parameters */ /* Method and class parameters */
...@@ -160,17 +158,17 @@ a { ...@@ -160,17 +158,17 @@ a {
/* FONTS */ /* FONTS */
body{ body{
font-family: Calibre; font-family: Calibre, sans-serif;
font-size: 16px; font-size: 16px;
} }
h1 { h1 {
font-family: Calibre-Thin; font-family: Calibre-Thin, sans-serif;
font-size: 70px; font-size: 70px;
} }
h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{ h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
font-family: Calibre-Medium; font-family: Calibre-Medium, sans-serif;
} }
@font-face { @font-face {
...@@ -196,4 +194,3 @@ h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{ ...@@ -196,4 +194,3 @@ h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
src: url(./Calibre-Thin.otf); src: url(./Calibre-Thin.otf);
font-weight:400; font-weight:400;
} }
...@@ -46,8 +46,7 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train ...@@ -46,8 +46,7 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
5. `XLNet <https://github.com/zihangdai/xlnet>`_ (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 5. `XLNet <https://github.com/zihangdai/xlnet>`_ (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`_ by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. `XLM <https://github.com/facebookresearch/XLM>`_ (from Facebook) released together with the paper `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_ by Guillaume Lample and Alexis Conneau. 6. `XLM <https://github.com/facebookresearch/XLM>`_ (from Facebook) released together with the paper `Cross-lingual Language Model Pretraining <https://arxiv.org/abs/1901.07291>`_ by Guillaume Lample and Alexis Conneau.
7. `RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_ (from Facebook), released together with the paper a `Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 7. `RoBERTa <https://github.com/pytorch/fairseq/tree/master/examples/roberta>`_ (from Facebook), released together with the paper a `Robustly Optimized BERT Pretraining Approach <https://arxiv.org/abs/1907.11692>`_ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. `DistilBERT <https://huggingface.co/transformers/model_doc/distilbert.html>`_ (from HuggingFace) released together with the blog post `Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT <https://medium.com/huggingface/distilbert-8cf3380435b5>`_ by Victor Sanh, Lysandre Debut and Thomas Wolf. 8. `DistilBERT <https://huggingface.co/transformers/model_doc/distilbert.html>`_ (from HuggingFace) released together with the paper `DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`_ by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2 <https://github.com/huggingface/transformers/tree/master/examples/distillation>`_.
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
...@@ -63,6 +62,7 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train ...@@ -63,6 +62,7 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
migration migration
bertology bertology
torchscript torchscript
multilingual
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
......
Installation # Installation
================================================
Transformers is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 1.1.0 Transformers is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 1.1.0
With pip ## With pip
^^^^^^^^
PyTorch Transformers can be installed using pip as follows: PyTorch Transformers can be installed using pip as follows:
.. code-block:: bash ``` bash
pip install transformers
```
pip install transformers ## From source
From source
^^^^^^^^^^^
To install from source, clone the repository and install with: To install from source, clone the repository and install with:
.. code-block:: bash ``` bash
git clone https://github.com/huggingface/transformers.git
git clone https://github.com/huggingface/transformers.git cd transformers
cd transformers pip install [--editable] .
pip install [--editable] . ```
Tests ## Tests
^^^^^
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the `tests folder <https://github.com/huggingface/transformers/tree/master/transformers/tests>`_ and examples tests in the `examples folder <https://github.com/huggingface/transformers/tree/master/examples>`_. An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
Tests can be run using `pytest` (install pytest if needed with `pip install pytest`). Tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
Run all the tests from the root of the cloned repository with the commands: Run all the tests from the root of the cloned repository with the commands:
.. code-block:: bash ``` bash
python -m pytest -sv ./transformers/tests/
python -m pytest -sv ./transformers/tests/ python -m pytest -sv ./examples/
python -m pytest -sv ./examples/ ```
OpenAI GPT original tokenization workflow ## OpenAI GPT original tokenization workflow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (use version 4.4.3 if you are using Python 2) and ``SpaCy`` : If you want to reproduce the original tokenization process of the `OpenAI GPT` paper, you will need to install `ftfy` (use version 4.4.3 if you are using Python 2) and `SpaCy`:
.. code-block:: bash ``` bash
pip install spacy ftfy==4.4.3
python -m spacy download en
```
pip install spacy ftfy==4.4.3 If you don't install `ftfy` and `SpaCy`, the `OpenAI GPT` tokenizer will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
python -m spacy download en
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry). ## Note on model downloads (Continuous Integration or large-scale deployments)
Note on model downloads (Continuous Integration or large-scale deployments)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If you expect to be downloading large volumes of models (more than 1,000) from our hosted bucket (for instance through your CI setup, or a large-scale production deployment), please cache the model files on your end. It will be way faster, and cheaper. Feel free to contact us privately if you need any help. If you expect to be downloading large volumes of models (more than 1,000) from our hosted bucket (for instance through your CI setup, or a large-scale production deployment), please cache the model files on your end. It will be way faster, and cheaper. Feel free to contact us privately if you need any help.
## Do you want to run a Transformer model on a mobile device?
Do you want to run a Transformer model on a mobile device? You should check out our [swift-coreml-transformers](https://github.com/huggingface/swift-coreml-transformers) repo.
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You should check out our `swift-coreml-transformers <https://github.com/huggingface/swift-coreml-transformers>`_ repo.
It contains an example of a conversion script from a Pytorch trained Transformer model (here, ``GPT-2``) to a CoreML model that runs on iOS devices.
It also contains an implementation of BERT for Question answering. It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML, At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting! or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!
Multi-lingual models
================================================
Most of the models available in this library are mono-lingual models (English, Chinese and German). A few
multi-lingual models are available and have a different mechanisms than mono-lingual models.
This page details the usage of these models.
The two models that currently support multiple languages are BERT and XLM.
XLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
XLM has a total of 10 different checkpoints, only one of which is mono-lingual. The 9 remaining model checkpoints can
be split in two categories: the checkpoints that make use of language embeddings, and those that don't
XLM & Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-ende-1024`` (Masked language modeling, English-German)
- ``xlm-mlm-enfr-1024`` (Masked language modeling, English-French)
- ``xlm-mlm-enro-1024`` (Masked language modeling, English-Romanian)
- ``xlm-mlm-xnli15-1024`` (Masked language modeling, XNLI languages)
- ``xlm-mlm-tlm-xnli15-1024`` (Masked language modeling + Translation, XNLI languages)
- ``xlm-clm-enfr-1024`` (Causal language modeling, English-French)
- ``xlm-clm-ende-1024`` (Causal language modeling, English-German)
These checkpoints require language embeddings that will specify the language used at inference time. These language
embeddings are represented as a tensor that is of the same shape as the input ids passed to the model. The values in
these tensors depend on the language used and are identifiable using the ``lang2id`` and ``id2lang`` attributes
from the tokenizer.
Here is an example using the ``xlm-clm-enfr-1024`` checkpoint (Causal language modeling, English-French):
.. code-block::
import torch
from transformers import XLMTokenizer, XLMWithLMHeadModel
tokenizer = XLMTokenizer.from_pretrained("xlm-clm-1024-enfr")
The different languages this model/tokenizer handles, as well as the ids of these languages are visible using the
``lang2id`` attribute:
.. code-block::
print(tokenizer.lang2id) # {'en': 0, 'fr': 1}
These ids should be used when passing a language parameter during a model pass. Let's define our inputs:
.. code-block::
input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
We should now define the language embedding by using the previously defined language id. We want to create a tensor
filled with the appropriate language ids, of the same size as input_ids. For english, the id is 0:
.. code-block::
language_id = tokenizer.lang2id['en'] # 0
langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
# We reshape it to be of size (batch_size, sequence_length)
langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1)
You can then feed it all as input to your model:
.. code-block::
outputs = model(input_ids, langs=langs)
The example `run_generation.py <https://github.com/huggingface/transformers/blob/master/examples/run_generation.py>`__
can generate text using the CLM checkpoints from XLM, using the language embeddings.
XLM without Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-17-1280`` (Masked language modeling, 17 languages)
- ``xlm-mlm-100-1280`` (Masked language modeling, 100 languages)
These checkpoints do not require language embeddings at inference time. These models are used to have generic
sentence representations, differently from previously-mentioned XLM checkpoints.
BERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
BERT has two checkpoints that can be used for multi-lingual tasks:
- ``bert-base-multilingual-uncased`` (Masked language modeling + Next sentence prediction, 102 languages)
- ``bert-base-multilingual-cased`` (Masked language modeling + Next sentence prediction, 104 languages)
These checkpoints do not require language embeddings at inference time. They should identify the language
used in the context and infer accordingly.
\ No newline at end of file
...@@ -98,6 +98,12 @@ Here is the full list of the currently provided pretrained models together with ...@@ -98,6 +98,12 @@ Here is the full list of the currently provided pretrained models together with
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-clm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads | | | ``xlm-clm-ende-1024`` | | 6-layer, 1024-hidden, 8-heads |
| | | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia | | | | | XLM English-German model trained with CLM (Causal Language Modeling) on the concatenation of English and German wikipedia |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-17-1280`` | | 16-layer, 1280-hidden, 16-heads |
| | | | XLM model trained with MLM (Masked Language Modeling) on 17 languages. |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``xlm-mlm-100-1280`` | | 16-layer, 1280-hidden, 16-heads |
| | | | XLM model trained with MLM (Masked Language Modeling) on 100 languages. |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| RoBERTa | ``roberta-base`` | | 12-layer, 768-hidden, 12-heads, 125M parameters | | RoBERTa | ``roberta-base`` | | 12-layer, 768-hidden, 12-heads, 125M parameters |
| | | | RoBERTa using the BERT-base architecture | | | | | RoBERTa using the BERT-base architecture |
...@@ -113,11 +119,15 @@ Here is the full list of the currently provided pretrained models together with ...@@ -113,11 +119,15 @@ Here is the full list of the currently provided pretrained models together with
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters | | DistilBERT | ``distilbert-base-uncased`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint | | | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) | | | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ | +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters | | | ``distilbert-base-uncased-distilled-squad`` | | 6-layer, 768-hidden, 12-heads, 66M parameters |
| | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. | | | | | The DistilBERT model distilled from the BERT model `bert-base-uncased` checkpoint, with an additional linear layer. |
| | | (see `details <https://medium.com/huggingface/distilbert-8cf3380435b5>`__) | | | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilgpt2`` | | 6-layer, 768-hidden, 12-heads, 82M parameters |
| | | | The DistilGPT2 model distilled from the GPT2 model `gpt2` checkpoint. |
| | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+ +-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CTRL | ``ctrl`` | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters | | CTRL | ``ctrl`` | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters |
| | | | Salesforce's Large-sized CTRL English model | | | | | Salesforce's Large-sized CTRL English model |
......
# DistilBERT # Distil*
This folder contains the original code used to train DistilBERT as well as examples showcasing how to use DistilBERT. This folder contains the original code used to train Distil* as well as examples showcasing how to use DistilBERT and DistilGPT2.
**2019, October 3rd - Update** We release our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108) explaining our approach on **DistilBERT**. It includes updated results and further experiments. We applied the same method to GPT2 and release the weights of **DistilGPT2**. DistilGPT2 is two times faster and 33% smaller than GPT2.
**2019, September 19th - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future! **2019, September 19th - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future!
## What is DistilBERT ## What is Distil*
Distil* is a class of compressed models that started with DistilBERT. DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production.
DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production. We have applied the same method to GPT2 and release the weights of the compressed model. On the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 15.0 compared to 18.5 for DistilGPT2 (after fine-tuning on the train set).
For more information on DistilBERT, please refer to our [detailed blog post](https://medium.com/huggingface/smaller-faster-cheaper-lighter-introducing-distilbert-a-distilled-version-of-bert-8cf3380435b5 For more information on DistilBERT, please refer to our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108). The paper superseeds our [previous blogpost](https://medium.com/huggingface/distilbert-8cf3380435b5) with a different distillation loss and better performances.
). *Please note that we will publish a formal write-up with updated and more complete results in the near future (September 19th).*
Here's the updated results on the dev sets of GLUE: Here are the results on the dev sets of GLUE:
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | WNLI | | Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2| STS-B| WNLI |
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| | :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:|
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 | | BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 |
| DistilBERT | **75.2** | 49.1 | 81.8 | 90.2 | 87.0 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 | | DistilBERT | **76.8** | 49.1 | 81.8 | 90.2 | 90.2 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 |
## Setup ## Setup
...@@ -26,10 +29,12 @@ This part of the library has only be tested with Python3.6+. There are few speci ...@@ -26,10 +29,12 @@ This part of the library has only be tested with Python3.6+. There are few speci
## How to use DistilBERT ## How to use DistilBERT
Transformers includes two pre-trained DistilBERT models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT): Transformers includes two pre-trained Distil* models, currently only provided for English (we are investigating the possibility to train and release a multilingual version of DistilBERT):
- `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters. - `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters.
- `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score). - `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score).
- `distilgpt2`: DistilGPT2 English language model pretrained with the supervision of `gpt2` (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset and . The model has 6 layers, 768 dimension and 12 heads, totalizing 82M (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
- and more to come! 🤗🤗🤗
Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models. Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models.
...@@ -42,9 +47,11 @@ outputs = model(input_ids) ...@@ -42,9 +47,11 @@ outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
``` ```
## How to train DistilBERT Similarly, using DistilGPT2 simply consists in calling the GPT2 classes from a different pretrained checkpoint: `model = GPT2Model.from_pretrained('distilgpt2')`.
## How to train Distil*
In the following, we will explain how you can train your own compressed model. In the following, we will explain how you can train DistilBERT.
### A. Preparing the data ### A. Preparing the data
...@@ -57,7 +64,8 @@ First, we will binarize the data, i.e. tokenize the data and convert each token ...@@ -57,7 +64,8 @@ First, we will binarize the data, i.e. tokenize the data and convert each token
```bash ```bash
python scripts/binarized_data.py \ python scripts/binarized_data.py \
--file_path data/dump.txt \ --file_path data/dump.txt \
--bert_tokenizer bert-base-uncased \ --tokenizer_type bert \
--tokenizer_name bert-base-uncased \
--dump_file data/binarized_text --dump_file data/binarized_text
``` ```
...@@ -66,7 +74,8 @@ Our implementation of masked language modeling loss follows [XLM](https://github ...@@ -66,7 +74,8 @@ Our implementation of masked language modeling loss follows [XLM](https://github
```bash ```bash
python scripts/token_counts.py \ python scripts/token_counts.py \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts_dump data/token_counts.bert-base-uncased.pickle --token_counts_dump data/token_counts.bert-base-uncased.pickle \
--vocab_size 30522
``` ```
### B. Training ### B. Training
...@@ -75,6 +84,12 @@ Training with distillation is really simple once you have pre-processed the data ...@@ -75,6 +84,12 @@ Training with distillation is really simple once you have pre-processed the data
```bash ```bash
python train.py \ python train.py \
--student_type distilbert \
--student_config training_configs/distilbert-base-uncased.json \
--teacher_type bert \
--teacher_name bert-base-uncased \
--alpha_ce 5.0 --alpha_mlm 2.0 --alpha_cos 1.0 --mlm \
--freeze_pos_embs \
--dump_path serialization_dir/my_first_training \ --dump_path serialization_dir/my_first_training \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle \
...@@ -83,7 +98,7 @@ python train.py \ ...@@ -83,7 +98,7 @@ python train.py \
By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them. By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them.
We highly encourage you to use distributed training for training DistilBert as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs: We highly encourage you to use distributed training for training DistilBERT as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs:
```bash ```bash
export NODE_RANK=0 export NODE_RANK=0
...@@ -105,11 +120,17 @@ python -m torch.distributed.launch \ ...@@ -105,11 +120,17 @@ python -m torch.distributed.launch \
train.py \ train.py \
--force \ --force \
--n_gpu $WORLD_SIZE \ --n_gpu $WORLD_SIZE \
--student_type distilbert \
--student_config training_configs/distilbert-base-uncased.json \
--teacher_type bert \
--teacher_name bert-base-uncased \
--alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --mlm \
--freeze_pos_embs \
--dump_path serialization_dir/my_first_training \
--data_file data/binarized_text.bert-base-uncased.pickle \ --data_file data/binarized_text.bert-base-uncased.pickle \
--token_counts data/token_counts.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle
--dump_path serialization_dir/my_first_distillation
``` ```
**Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract_for_distil.py` to create a valid initialization checkpoint and use `--from_pretrained_weights` and `--from_pretrained_config` arguments to use this initialization for the distilled training! **Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract.py` and `scripts/extract_distilbert.py` to create a valid initialization checkpoint and use `--student_pretrained_weights` argument to use this initialization for the distilled training!
Happy distillation! Happy distillation!
...@@ -12,8 +12,8 @@ ...@@ -12,8 +12,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" The distiller to distil DistilBERT """ The distiller to distil the student.
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
""" """
import os import os
import math import math
...@@ -28,16 +28,19 @@ import torch ...@@ -28,16 +28,19 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.optim import AdamW from torch.optim import AdamW
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import RandomSampler, BatchSampler, DataLoader
from transformers import WarmupLinearSchedule from transformers import WarmupLinearSchedule
from utils import logger from utils import logger
from dataset import Dataset from lm_seqs_dataset import LmSeqsDataset
from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups
class Distiller: class Distiller:
def __init__(self, def __init__(self,
params: dict, params: dict,
dataloader: Dataset, dataset: LmSeqsDataset,
token_probs: torch.tensor, token_probs: torch.tensor,
student: nn.Module, student: nn.Module,
teacher: nn.Module): teacher: nn.Module):
...@@ -50,24 +53,36 @@ class Distiller: ...@@ -50,24 +53,36 @@ class Distiller:
self.student = student self.student = student
self.teacher = teacher self.teacher = teacher
self.dataloader = dataloader self.student_config = student.config
if self.params.n_gpu > 1: self.vocab_size = student.config.vocab_size
self.dataloader.split()
self.get_iterator(seed=params.seed) if params.n_gpu <= 1:
sampler = RandomSampler(dataset)
else:
sampler = DistributedSampler(dataset)
if params.group_by_size:
groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size)
sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size)
else:
sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False)
self.dataloader = DataLoader(dataset=dataset,
batch_sampler=sampler,
collate_fn=dataset.batch_sequences)
self.temperature = params.temperature self.temperature = params.temperature
assert self.temperature > 0. assert self.temperature > 0.
self.alpha_ce = params.alpha_ce self.alpha_ce = params.alpha_ce
self.alpha_mlm = params.alpha_mlm self.alpha_mlm = params.alpha_mlm
self.alpha_clm = params.alpha_clm
self.alpha_mse = params.alpha_mse self.alpha_mse = params.alpha_mse
self.alpha_cos = params.alpha_cos self.alpha_cos = params.alpha_cos
assert self.alpha_ce >= 0.
assert self.alpha_mlm >= 0.
assert self.alpha_mse >= 0.
assert self.alpha_cos >= 0.
assert self.alpha_ce + self.alpha_mlm + self.alpha_mse + self.alpha_cos > 0.
self.mlm = params.mlm
if self.mlm:
logger.info(f'Using MLM loss for LM step.')
self.mlm_mask_prop = params.mlm_mask_prop self.mlm_mask_prop = params.mlm_mask_prop
assert 0.0 <= self.mlm_mask_prop <= 1.0 assert 0.0 <= self.mlm_mask_prop <= 1.0
assert params.word_mask + params.word_keep + params.word_rand == 1.0 assert params.word_mask + params.word_keep + params.word_rand == 1.0
...@@ -77,6 +92,8 @@ class Distiller: ...@@ -77,6 +92,8 @@ class Distiller:
if self.fp16: if self.fp16:
self.pred_probs = self.pred_probs.half() self.pred_probs = self.pred_probs.half()
self.token_probs = self.token_probs.half() self.token_probs = self.token_probs.half()
else:
logger.info(f'Using CLM loss for LM step.')
self.epoch = 0 self.epoch = 0
self.n_iter = 0 self.n_iter = 0
...@@ -86,12 +103,13 @@ class Distiller: ...@@ -86,12 +103,13 @@ class Distiller:
self.last_loss = 0 self.last_loss = 0
self.last_loss_ce = 0 self.last_loss_ce = 0
self.last_loss_mlm = 0 self.last_loss_mlm = 0
self.last_loss_clm = 0
if self.alpha_mse > 0.: self.last_loss_mse = 0 if self.alpha_mse > 0.: self.last_loss_mse = 0
if self.alpha_cos > 0.: self.last_loss_cos = 0 if self.alpha_cos > 0.: self.last_loss_cos = 0
self.last_log = 0 self.last_log = 0
self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean') self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean')
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1) self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.mse_loss_fct = nn.MSELoss(reduction='sum') self.mse_loss_fct = nn.MSELoss(reduction='sum')
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
...@@ -99,7 +117,7 @@ class Distiller: ...@@ -99,7 +117,7 @@ class Distiller:
logger.info('--- Initializing model optimizer') logger.info('--- Initializing model optimizer')
assert params.gradient_accumulation_steps >= 1 assert params.gradient_accumulation_steps >= 1
self.num_steps_epoch = int(len(self.dataloader) / params.batch_size) + 1 self.num_steps_epoch = len(self.dataloader)
num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1 num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
no_decay = ['bias', 'LayerNorm.weight'] no_decay = ['bias', 'LayerNorm.weight']
...@@ -140,42 +158,17 @@ class Distiller: ...@@ -140,42 +158,17 @@ class Distiller:
logger.info("Using nn.parallel.DistributedDataParallel for distributed training.") logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student, self.student = DistributedDataParallel(self.student,
device_ids=[params.local_rank], device_ids=[params.local_rank],
output_device=params.local_rank) output_device=params.local_rank,
find_unused_parameters=True)
self.is_master = params.is_master self.is_master = params.is_master
if self.is_master: if self.is_master:
logger.info('--- Initializing Tensorboard') logger.info('--- Initializing Tensorboard')
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train')) self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train'))
self.tensorboard.add_text(tag='config', text_string=str(self.params), global_step=0) self.tensorboard.add_text(tag='config/training', text_string=str(self.params), global_step=0)
self.tensorboard.add_text(tag='config/student', text_string=str(self.student_config), global_step=0)
def get_iterator(self,
seed: int = None):
"""
Initialize the data iterator.
Each process has its own data iterator (iterating on his own random portion of the dataset).
Input:
------
seed: `int` - The random seed.
"""
logger.info('--- Initializing Data Iterator')
self.data_iterator = self.dataloader.get_iterator(seed=seed)
def get_batch(self): def prepare_batch_mlm(self,
"""
Call the data iterator to output a new batch.
If the data iterator went through the whole dataset, create a new iterator.
"""
assert hasattr(self, 'data_iterator')
try:
x = next(self.data_iterator)
except StopIteration:
logger.warning('--- Went through the whole dataset. Creating new data iterator.')
self.data_iterator = self.dataloader.get_iterator()
x = next(self.data_iterator)
return x
def prepare_batch(self,
batch): batch):
""" """
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM. Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM.
...@@ -222,7 +215,7 @@ class Distiller: ...@@ -222,7 +215,7 @@ class Distiller:
assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item() assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()
_token_ids_real = token_ids[pred_mask] _token_ids_real = token_ids[pred_mask]
_token_ids_rand = _token_ids_real.clone().random_(self.params.vocab_size) _token_ids_rand = _token_ids_real.clone().random_(self.vocab_size)
_token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token']) _token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token'])
probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True) probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
_token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long() _token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long()
...@@ -230,8 +223,41 @@ class Distiller: ...@@ -230,8 +223,41 @@ class Distiller:
mlm_labels[~pred_mask] = -1 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility mlm_labels[~pred_mask] = -1 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, mlm_labels return token_ids, attn_mask, mlm_labels
def prepare_batch_clm(self,
batch):
"""
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the labels for CLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
clm_labels: `torch.tensor(bs, seq_length)` - The causal languge modeling labels. There is a -1 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = (torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None])
clm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
clm_labels[~attn_mask] = -1 # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, clm_labels
def round_batch(self, def round_batch(self,
x: torch.tensor, x: torch.tensor,
lengths: torch.tensor): lengths: torch.tensor):
...@@ -269,7 +295,10 @@ class Distiller: ...@@ -269,7 +295,10 @@ class Distiller:
if ml1 % 8 != 0: if ml1 % 8 != 0:
pad = 8 - (ml1 % 8) pad = 8 - (ml1 % 8)
ml2 = ml1 + pad ml2 = ml1 + pad
if self.mlm:
pad_id = self.params.special_tok_ids['pad_token'] pad_id = self.params.special_tok_ids['pad_token']
else:
pad_id = self.params.special_tok_ids['unk_token']
padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id) padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
x = torch.cat([x, padding_tensor], 1) x = torch.cat([x, padding_tensor], 1)
assert x.size() == (bs2, ml2) assert x.size() == (bs2, ml2)
...@@ -292,14 +321,16 @@ class Distiller: ...@@ -292,14 +321,16 @@ class Distiller:
if self.multi_gpu: if self.multi_gpu:
torch.distributed.barrier() torch.distributed.barrier()
iter_bar = trange(self.num_steps_epoch, desc="-Iter", disable=self.params.local_rank not in [-1, 0]) iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
for __ in range(self.num_steps_epoch): for batch in iter_bar:
batch = self.get_batch()
if self.params.n_gpu > 0: if self.params.n_gpu > 0:
batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch) batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch)
token_ids, attn_mask, mlm_labels = self.prepare_batch(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, mlm_labels=mlm_labels) if self.mlm:
token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch)
else:
token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels)
iter_bar.update() iter_bar.update()
iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}', iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}',
...@@ -317,7 +348,7 @@ class Distiller: ...@@ -317,7 +348,7 @@ class Distiller:
def step(self, def step(self,
input_ids: torch.tensor, input_ids: torch.tensor,
attention_mask: torch.tensor, attention_mask: torch.tensor,
mlm_labels: torch.tensor): lm_labels: torch.tensor):
""" """
One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation), One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
and possibly a parameter update (depending on the gradient accumulation). and possibly a parameter update (depending on the gradient accumulation).
...@@ -326,17 +357,22 @@ class Distiller: ...@@ -326,17 +357,22 @@ class Distiller:
------ ------
input_ids: `torch.tensor(bs, seq_length)` - The token ids. input_ids: `torch.tensor(bs, seq_length)` - The token ids.
attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention. attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels. lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM).
""" """
if self.mlm:
s_logits, s_hidden_states = self.student(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size) s_logits, s_hidden_states = self.student(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
with torch.no_grad(): with torch.no_grad():
t_logits, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size) t_logits, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=attention_mask) # (bs, seq_length, voc_size)
else:
s_logits, _, s_hidden_states = self.student(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
with torch.no_grad():
t_logits, _, t_hidden_states = self.teacher(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
assert s_logits.size() == t_logits.size() assert s_logits.size() == t_logits.size()
#https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100 #https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
#https://github.com/peterliht/knowledge-distillation-pytorch/issues/2 #https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
if self.params.restrict_ce_to_mask: if self.params.restrict_ce_to_mask:
mask = (mlm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size) mask = (lm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
else: else:
mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size) mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
...@@ -348,13 +384,20 @@ class Distiller: ...@@ -348,13 +384,20 @@ class Distiller:
loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1), loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1),
F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2 F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2
loss = self.alpha_ce*loss_ce loss = self.alpha_ce*loss_ce
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
loss_mlm = self.mlm_loss_fct(s_logits.view(-1, s_logits.size(-1)), mlm_labels.view(-1)) loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1))
loss += self.alpha_mlm * loss_mlm loss += self.alpha_mlm * loss_mlm
if self.alpha_clm > 0.:
shift_logits = s_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
loss += self.alpha_clm * loss_clm
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction
loss += self.alpha_mse * loss_mse loss += self.alpha_mse * loss_mse
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim) s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim)
t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim) t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim)
...@@ -376,6 +419,8 @@ class Distiller: ...@@ -376,6 +419,8 @@ class Distiller:
self.last_loss_ce = loss_ce.item() self.last_loss_ce = loss_ce.item()
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
self.last_loss_mlm = loss_mlm.item() self.last_loss_mlm = loss_mlm.item()
if self.alpha_clm > 0.:
self.last_loss_clm = loss_clm.item()
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.last_loss_mse = loss_mse.item() self.last_loss_mse = loss_mse.item()
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
...@@ -452,6 +497,8 @@ class Distiller: ...@@ -452,6 +497,8 @@ class Distiller:
self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter)
if self.alpha_mlm > 0.: if self.alpha_mlm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter)
if self.alpha_clm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter)
if self.alpha_mse > 0.: if self.alpha_mse > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter) self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter)
if self.alpha_cos > 0.: if self.alpha_cos > 0.:
......
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Adapted from PyTorch Vision (https://github.com/pytorch/vision/blob/master/references/detection/group_by_aspect_ratio.py)
"""
import bisect
import copy
from collections import defaultdict
import numpy as np
from torch.utils.data.sampler import BatchSampler, Sampler
from utils import logger
def _quantize(x, bins):
bins = copy.deepcopy(bins)
bins = sorted(bins)
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x))
return quantized
def create_lengths_groups(lengths, k=0):
bins = np.arange(start=3, stop=k, step=4).tolist() if k > 0 else [10]
groups = _quantize(lengths, bins)
# count number of elements per group
counts = np.unique(groups, return_counts=True)[1]
fbins = [0] + bins + [np.inf]
logger.info("Using {} as bins for aspect lengths quantization".format(fbins))
logger.info("Count of instances per bin: {}".format(counts))
return groups
class GroupedBatchSampler(BatchSampler):
"""
Wraps another sampler to yield a mini-batch of indices.
It enforces that the batch only contain elements from the same group.
It also tries to provide mini-batches which follows an ordering which is
as close as possible to the ordering from the original sampler.
Arguments:
sampler (Sampler): Base sampler.
group_ids (list[int]): If the sampler produces indices in range [0, N),
`group_ids` must be a list of `N` ints which contains the group id of each sample.
The group ids must be a continuous set of integers starting from
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
self.batch_size = batch_size
def __iter__(self):
buffer_per_group = defaultdict(list)
samples_per_group = defaultdict(list)
num_batches = 0
for idx in self.sampler:
group_id = self.group_ids[idx]
buffer_per_group[group_id].append(idx)
samples_per_group[group_id].append(idx)
if len(buffer_per_group[group_id]) == self.batch_size:
yield buffer_per_group[group_id] #TODO
num_batches += 1
del buffer_per_group[group_id]
assert len(buffer_per_group[group_id]) < self.batch_size
# now we have run out of elements that satisfy
# the group criteria, let's return the remaining
# elements so that the size of the sampler is
# deterministic
expected_num_batches = len(self)
num_remaining = expected_num_batches - num_batches
if num_remaining > 0:
# for the remaining batches, group the batches by similar lengths
batch_idx = []
for group_id, idxs in sorted(buffer_per_group.items(), key=lambda x: x[0]):
batch_idx.extend(idxs)
if len(batch_idx) >= self.batch_size:
yield batch_idx[:self.batch_size]
batch_idx = batch_idx[self.batch_size:]
num_remaining -= 1
if len(batch_idx) > 0:
yield batch_idx
num_remaining -= 1
assert num_remaining == 0
def __len__(self):
"""
Return the number of mini-batches rather than the number of samples.
"""
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
...@@ -12,30 +12,33 @@ ...@@ -12,30 +12,33 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" Dataloaders to train DistilBERT """ Dataset to distilled models
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
""" """
from typing import List
import math
from itertools import chain
from collections import Counter
import numpy as np
import torch import torch
from torch.utils.data import Dataset
import numpy as np
from utils import logger from utils import logger
class Dataset: class LmSeqsDataset(Dataset):
"""Custom Dataset wrapping language modeling sequences.
Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.
Input:
------
params: `NameSpace` parameters
data: `List[np.array[int]]
"""
def __init__(self, def __init__(self,
params, params,
data): data):
self.params = params self.params = params
self.tokens_per_batch = params.tokens_per_batch
self.batch_size = params.batch_size
self.shuffle = params.shuffle
self.group_by_size = params.group_by_size
self.token_ids = np.array(data) self.token_ids = np.array(data)
self.lengths = np.uint16([len(t) for t in data]) self.lengths = np.array([len(t) for t in data])
self.check() self.check()
self.remove_long_sequences() self.remove_long_sequences()
...@@ -43,6 +46,9 @@ class Dataset: ...@@ -43,6 +46,9 @@ class Dataset:
self.check() self.check()
self.print_statistics() self.print_statistics()
def __getitem__(self, index):
return (self.token_ids[index], self.lengths[index])
def __len__(self): def __len__(self):
return len(self.lengths) return len(self.lengths)
...@@ -51,12 +57,14 @@ class Dataset: ...@@ -51,12 +57,14 @@ class Dataset:
Some sanity checks Some sanity checks
""" """
assert len(self.token_ids) == len(self.lengths) assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def remove_long_sequences(self): def remove_long_sequences(self):
""" """
Sequences that are too long are splitted by chunk of max_position_embeddings. Sequences that are too long are splitted by chunk of max_model_input_size.
""" """
indices = self.lengths >= self.params.max_position_embeddings max_len = self.params.max_model_input_size
indices = self.lengths > max_len
logger.info(f'Splitting {sum(indices)} too long sequences.') logger.info(f'Splitting {sum(indices)} too long sequences.')
def divide_chunks(l, n): def divide_chunks(l, n):
...@@ -64,10 +72,13 @@ class Dataset: ...@@ -64,10 +72,13 @@ class Dataset:
new_tok_ids = [] new_tok_ids = []
new_lengths = [] new_lengths = []
if self.params.mlm:
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
max_len = self.params.max_position_embeddings else:
cls_id, sep_id = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
for seq_, len_ in zip(self.token_ids, self.lengths): for seq_, len_ in zip(self.token_ids, self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len: if len_ <= max_len:
new_tok_ids.append(seq_) new_tok_ids.append(seq_)
new_lengths.append(len_) new_lengths.append(len_)
...@@ -79,6 +90,7 @@ class Dataset: ...@@ -79,6 +90,7 @@ class Dataset:
if sub_s[-1] != sep_id: if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), sep_id) sub_s = np.insert(sub_s, len(sub_s), sep_id)
assert len(sub_s) <= max_len assert len(sub_s) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(sub_s) sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs) new_tok_ids.extend(sub_seqs)
...@@ -113,89 +125,27 @@ class Dataset: ...@@ -113,89 +125,27 @@ class Dataset:
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids]) # nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)') # logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
def select_data(self, a: int, b: int):
"""
Select a subportion of the data.
"""
n_sequences = len(self)
assert 0 <= a < b <= n_sequences, ValueError(f'`0 <= a < b <= n_sequences` is not met with a={a} and b={b}')
logger.info(f'Selecting sequences from {a} to {b} (excluded).')
self.token_ids = self.token_ids[a:b]
self.lengths = self.lengths[a:b]
self.check()
def split(self):
"""
Distributed training: split the data accross the processes.
"""
assert self.params.n_gpu > 1
logger.info('Splitting the data accross the processuses.')
n_seq = len(self)
n_seq_per_procesus = n_seq // self.params.world_size
a = n_seq_per_procesus * self.params.global_rank
b = a + n_seq_per_procesus
self.select_data(a=a, b=b)
def batch_sequences(self, def batch_sequences(self,
token_ids: List[List[int]], batch):
lengths: List[int]):
""" """
Do the padding and transform into torch.tensor. Do the padding and transform into torch.tensor.
""" """
token_ids = [t[0] for t in batch]
lengths = [t[1] for t in batch]
assert len(token_ids) == len(lengths) assert len(token_ids) == len(lengths)
# Max for paddings # Max for paddings
max_seq_len_ = max(lengths) max_seq_len_ = max(lengths)
# Pad token ids # Pad token ids
if self.params.mlm:
pad_idx = self.params.special_tok_ids['pad_token'] pad_idx = self.params.special_tok_ids['pad_token']
else:
pad_idx = self.params.special_tok_ids['unk_token']
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids] tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
assert len(tk_) == len(token_ids) assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_) assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_) tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths.astype(int)) # (bs) lg_t = torch.tensor(lengths) # (bs)
return tk_t, lg_t return tk_t, lg_t
def get_batches_iterator(self,
batches):
"""
Return an iterator over batches.
"""
for sequences_ids in batches:
token_ids, lengths = self.batch_sequences(self.token_ids[sequences_ids],
self.lengths[sequences_ids])
yield (token_ids, lengths)
def get_iterator(self,
seed: int = None):
"""
Return a data iterator.
"""
rng = np.random.RandomState(seed)
n_sequences = len(self)
indices = np.arange(n_sequences)
if self.group_by_size:
indices = indices[np.argsort(self.lengths[indices], kind='mergesort')]
if self.tokens_per_batch == -1:
batches = np.array_split(indices, math.ceil(len(indices) * 1. / self.batch_size))
else:
assert self.tokens_per_batch > 0
batch_ids = np.cumsum(self.lengths[indices]) // self.tokens_per_batch
_, bounds = np.unique(batch_ids, return_index=True)
batches = [indices[bounds[i]:bounds[i + 1]] for i in range(len(bounds) - 1)]
if bounds[-1] < len(indices):
batches.append(indices[bounds[-1]:])
if self.shuffle:
rng.shuffle(batches)
assert n_sequences == sum([len(x) for x in batches])
assert self.lengths[indices].sum() == sum([self.lengths[x].sum() for x in batches])
return self.get_batches_iterator(batches=batches)
...@@ -3,4 +3,4 @@ tensorboard>=1.14.0 ...@@ -3,4 +3,4 @@ tensorboard>=1.14.0
tensorboardX==1.8 tensorboardX==1.8
psutil==5.6.3 psutil==5.6.3
scipy==1.3.1 scipy==1.3.1
pytorch_transformers==1.2.0 transformers==2.0.0
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This is the exact same script as `examples/run_squad.py` (as of 2019, October 4th) with an additional and optional step of distillation."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import random
import glob
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
from transformers import (WEIGHTS_NAME, BertConfig,
BertForQuestionAnswering, BertTokenizer,
XLMConfig, XLMForQuestionAnswering,
XLMTokenizer, XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from ..utils_squad import (read_squad_examples, convert_examples_to_features,
RawResult, write_predictions,
RawResultExtended, write_predictions_extended)
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
from ..utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, tokenizer, teacher=None):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
if teacher is not None:
teacher.eval()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'start_positions': batch[3],
'end_positions': batch[4]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[5],
'p_mask': batch[6]})
outputs = model(**inputs)
loss, start_logits_stu, end_logits_stu = outputs
# Distillation loss
if teacher is not None:
if 'token_type_ids' not in inputs:
inputs['token_type_ids'] = None if args.teacher_type == 'xlm' else batch[2]
with torch.no_grad():
start_logits_tea, end_logits_tea = teacher(input_ids=inputs['input_ids'],
token_type_ids=inputs['token_type_ids'],
attention_mask=inputs['attention_mask'])
assert start_logits_tea.size() == start_logits_stu.size()
assert end_logits_tea.size() == end_logits_stu.size()
loss_fct = nn.KLDivLoss(reduction='batchmean')
loss_start = loss_fct(F.log_softmax(start_logits_stu/args.temperature, dim=-1),
F.softmax(start_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
loss_end = loss_fct(F.log_softmax(end_logits_stu/args.temperature, dim=-1),
F.softmax(end_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
loss_ce = (loss_start + loss_end)/2.
loss = args.alpha_ce*loss_ce + args.alpha_squad*loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1]
}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
example_indices = batch[3]
if args.model_type in ['xlnet', 'xlm']:
inputs.update({'cls_index': batch[4],
'p_mask': batch[5]})
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
result = RawResultExtended(unique_id = unique_id,
start_top_log_probs = to_list(outputs[0][i]),
start_top_index = to_list(outputs[1][i]),
end_top_log_probs = to_list(outputs[2][i]),
end_top_index = to_list(outputs[3][i]),
cls_logits = to_list(outputs[4][i]))
else:
result = RawResult(unique_id = unique_id,
start_logits = to_list(outputs[0][i]),
end_logits = to_list(outputs[1][i]))
all_results.append(result)
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
if args.model_type in ['xlnet', 'xlm']:
# XLNet uses a more complex post-processing procedure
write_predictions_extended(examples, features, all_results, args.n_best_size,
args.max_answer_length, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.predict_file,
model.config.start_n_top, model.config.end_n_top,
args.version_2_with_negative, tokenizer, args.verbose_logging)
else:
write_predictions(examples, features, all_results, args.n_best_size,
args.max_answer_length, args.do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
args.version_2_with_negative, args.null_score_diff_threshold)
# Evaluate with the official SQuAD script
evaluate_options = EVAL_OPTS(data_file=args.predict_file,
pred_file=output_prediction_file,
na_prob_file=output_null_log_odds_file)
results = evaluate_on_squad(evaluate_options)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
'dev' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length)))
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_squad_examples(input_file=input_file,
is_training=not evaluate,
version_2_with_negative=args.version_2_with_negative)
features = convert_examples_to_features(examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
if evaluate:
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_example_index, all_cls_index, all_p_mask)
else:
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions,
all_cls_index, all_p_mask)
if output_examples:
return dataset, examples, features
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file", default=None, type=str, required=True,
help="SQuAD json for training. E.g., train-v1.1.json")
parser.add_argument("--predict_file", default=None, type=str, required=True,
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model checkpoints and predictions will be written.")
# Distillation parameters (optional)
parser.add_argument('--teacher_type', default=None, type=str,
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.")
parser.add_argument('--teacher_name_or_path', default=None, type=str,
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.")
parser.add_argument('--alpha_ce', default=0.5, type=float,
help="Distillation loss linear weight. Only for distillation.")
parser.add_argument('--alpha_squad', default=0.5, type=float,
help="True SQuAD loss linear weight. Only for distillation.")
parser.add_argument('--temperature', default=2.0, type=float,
help="Distillation temperature. Only for distillation.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--version_2_with_negative', action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.')
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.")
parser.add_argument("--max_seq_length", default=384, type=int,
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded.")
parser.add_argument("--doc_stride", default=128, type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.")
parser.add_argument("--max_query_length", default=64, type=int,
help="The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--n_best_size", default=20, type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
parser.add_argument("--max_answer_length", default=30, type=int,
help="The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another.")
parser.add_argument("--verbose_logging", action='store_true',
help="If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
if args.teacher_type is not None:
assert args.teacher_name_or_path is not None
assert args.alpha_ce > 0.
assert args.alpha_ce + args.alpha_squad > 0.
assert args.teacher_type != 'distilbert', "We constraint teachers not to be of type DistilBERT."
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
teacher = teacher_model_class.from_pretrained(args.teacher_name_or_path, config=teacher_config)
teacher.to(args.device)
else:
teacher = None
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()
...@@ -13,14 +13,14 @@ ...@@ -13,14 +13,14 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" """
Preprocessing script before training DistilBERT. Preprocessing script before distillation.
""" """
import argparse import argparse
import pickle import pickle
import random import random
import time import time
import numpy as np import numpy as np
from transformers import BertTokenizer, RobertaTokenizer from transformers import BertTokenizer, RobertaTokenizer, GPT2Tokenizer
import logging import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
...@@ -32,7 +32,7 @@ def main(): ...@@ -32,7 +32,7 @@ def main():
parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).") parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
parser.add_argument('--file_path', type=str, default='data/dump.txt', parser.add_argument('--file_path', type=str, default='data/dump.txt',
help='The path to the data.') help='The path to the data.')
parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta']) parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta', 'gpt2'])
parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased', parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
help="The tokenizer to use.") help="The tokenizer to use.")
parser.add_argument('--dump_file', type=str, default='data/dump', parser.add_argument('--dump_file', type=str, default='data/dump',
...@@ -43,10 +43,16 @@ def main(): ...@@ -43,10 +43,16 @@ def main():
logger.info(f'Loading Tokenizer ({args.tokenizer_name})') logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
if args.tokenizer_type == 'bert': if args.tokenizer_type == 'bert':
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name) tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['cls_token'] # `[CLS]`
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]`
elif args.tokenizer_type == 'roberta': elif args.tokenizer_type == 'roberta':
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name) tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `[CLS]` for bert, `<s>` for roberta bos = tokenizer.special_tokens_map['cls_token'] # `<s>`
sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]` for bert, `</s>` for roberta sep = tokenizer.special_tokens_map['sep_token'] # `</s>`
elif args.tokenizer_type == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>`
sep = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>`
logger.info(f'Loading text from {args.file_path}') logger.info(f'Loading text from {args.file_path}')
with open(args.file_path, 'r', encoding='utf8') as fp: with open(args.file_path, 'r', encoding='utf8') as fp:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment