Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d9b8d1a9
"tests/models/vscode:/vscode.git/clone" did not exist on "7f79a97399bb52aad8460e1da2f36577d5dccfed"
Unverified
Commit
d9b8d1a9
authored
Mar 17, 2022
by
Francesco Saverio Zuppichini
Committed by
GitHub
Mar 17, 2022
Browse files
update test (#16219)
parent
7e0d04be
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
9 deletions
+11
-9
tests/maskformer/test_modeling_maskformer.py
tests/maskformer/test_modeling_maskformer.py
+11
-9
No files found.
tests/maskformer/test_modeling_maskformer.py
View file @
d9b8d1a9
...
@@ -66,7 +66,9 @@ class MaskFormerModelTester:
...
@@ -66,7 +66,9 @@ class MaskFormerModelTester:
self
.
mask_feature_size
=
mask_feature_size
self
.
mask_feature_size
=
mask_feature_size
def
prepare_config_and_inputs
(
self
):
def
prepare_config_and_inputs
(
self
):
pixel_values
=
floats_tensor
([
self
.
batch_size
,
self
.
num_channels
,
self
.
min_size
,
self
.
max_size
])
pixel_values
=
floats_tensor
([
self
.
batch_size
,
self
.
num_channels
,
self
.
min_size
,
self
.
max_size
]).
to
(
torch_device
)
pixel_mask
=
torch
.
ones
([
self
.
batch_size
,
self
.
min_size
,
self
.
max_size
],
device
=
torch_device
)
pixel_mask
=
torch
.
ones
([
self
.
batch_size
,
self
.
min_size
,
self
.
max_size
],
device
=
torch_device
)
...
@@ -232,12 +234,12 @@ class MaskFormerModelTest(ModelTesterMixin, unittest.TestCase):
...
@@ -232,12 +234,12 @@ class MaskFormerModelTest(ModelTesterMixin, unittest.TestCase):
def
test_model_with_labels
(
self
):
def
test_model_with_labels
(
self
):
size
=
(
self
.
model_tester
.
min_size
,)
*
2
size
=
(
self
.
model_tester
.
min_size
,)
*
2
inputs
=
{
inputs
=
{
"pixel_values"
:
torch
.
randn
((
2
,
3
,
*
size
)),
"pixel_values"
:
torch
.
randn
((
2
,
3
,
*
size
)
,
device
=
torch_device
),
"mask_labels"
:
torch
.
randn
((
2
,
10
,
*
size
)),
"mask_labels"
:
torch
.
randn
((
2
,
10
,
*
size
)
,
device
=
torch_device
),
"class_labels"
:
torch
.
zeros
(
2
,
10
).
long
(),
"class_labels"
:
torch
.
zeros
(
2
,
10
,
device
=
torch_device
).
long
(),
}
}
model
=
MaskFormerForInstanceSegmentation
(
MaskFormerConfig
())
model
=
MaskFormerForInstanceSegmentation
(
MaskFormerConfig
())
.
to
(
torch_device
)
outputs
=
model
(
**
inputs
)
outputs
=
model
(
**
inputs
)
self
.
assertTrue
(
outputs
.
loss
is
not
None
)
self
.
assertTrue
(
outputs
.
loss
is
not
None
)
...
@@ -249,7 +251,7 @@ class MaskFormerModelTest(ModelTesterMixin, unittest.TestCase):
...
@@ -249,7 +251,7 @@ class MaskFormerModelTest(ModelTesterMixin, unittest.TestCase):
config
,
inputs
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
config
,
inputs
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
for
model_class
in
self
.
all_model_classes
:
model
=
model_class
(
config
)
model
=
model_class
(
config
)
.
to
(
torch_device
)
outputs
=
model
(
**
inputs
,
output_attentions
=
True
)
outputs
=
model
(
**
inputs
,
output_attentions
=
True
)
self
.
assertTrue
(
outputs
.
attentions
is
not
None
)
self
.
assertTrue
(
outputs
.
attentions
is
not
None
)
...
@@ -381,7 +383,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
...
@@ -381,7 +383,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
)
)
expected_slice
=
torch
.
tensor
(
expected_slice
=
torch
.
tensor
(
[[
-
1.3738
,
-
1.7725
,
-
1.9365
],
[
-
1.5978
,
-
1.9869
,
-
2.1524
],
[
-
1.5796
,
-
1.9271
,
-
2.0940
]]
[[
-
1.3738
,
-
1.7725
,
-
1.9365
],
[
-
1.5978
,
-
1.9869
,
-
2.1524
],
[
-
1.5796
,
-
1.9271
,
-
2.0940
]]
)
)
.
to
(
torch_device
)
self
.
assertTrue
(
torch
.
allclose
(
masks_queries_logits
[
0
,
0
,
:
3
,
:
3
],
expected_slice
,
atol
=
TOLERANCE
))
self
.
assertTrue
(
torch
.
allclose
(
masks_queries_logits
[
0
,
0
,
:
3
,
:
3
],
expected_slice
,
atol
=
TOLERANCE
))
# class_queries_logits
# class_queries_logits
class_queries_logits
=
outputs
.
class_queries_logits
class_queries_logits
=
outputs
.
class_queries_logits
...
@@ -392,7 +394,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
...
@@ -392,7 +394,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
[
3.6169e-02
,
-
5.9025e00
,
-
2.9313e00
],
[
3.6169e-02
,
-
5.9025e00
,
-
2.9313e00
],
[
1.0766e-04
,
-
7.7630e00
,
-
5.1263e00
],
[
1.0766e-04
,
-
7.7630e00
,
-
5.1263e00
],
]
]
)
)
.
to
(
torch_device
)
self
.
assertTrue
(
torch
.
allclose
(
outputs
.
class_queries_logits
[
0
,
:
3
,
:
3
],
expected_slice
,
atol
=
TOLERANCE
))
self
.
assertTrue
(
torch
.
allclose
(
outputs
.
class_queries_logits
[
0
,
:
3
,
:
3
],
expected_slice
,
atol
=
TOLERANCE
))
def
test_with_annotations_and_loss
(
self
):
def
test_with_annotations_and_loss
(
self
):
...
@@ -406,7 +408,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
...
@@ -406,7 +408,7 @@ class MaskFormerModelIntegrationTest(unittest.TestCase):
{
"masks"
:
np
.
random
.
rand
(
10
,
384
,
384
).
astype
(
np
.
float32
),
"labels"
:
np
.
zeros
(
10
).
astype
(
np
.
int64
)},
{
"masks"
:
np
.
random
.
rand
(
10
,
384
,
384
).
astype
(
np
.
float32
),
"labels"
:
np
.
zeros
(
10
).
astype
(
np
.
int64
)},
],
],
return_tensors
=
"pt"
,
return_tensors
=
"pt"
,
)
)
.
to
(
torch_device
)
with
torch
.
no_grad
():
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs
)
outputs
=
model
(
**
inputs
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment