"tests/models/auto/test_tokenization_auto.py" did not exist on "ed4e5422604b04df823eb2011e9ed4d766cf9980"
Unverified Commit d8049331 authored by Gunjan Chhablani's avatar Gunjan Chhablani Committed by GitHub
Browse files

Add FNet (#13045)



* Init FNet

* Update config

* Fix config

* Update model classes

* Update tokenizers to use sentencepiece

* Fix errors in model

* Fix defaults in config

* Remove position embedding type completely

* Fix typo and take only real numbers

* Fix type vocab size in configuration

* Add projection layer to embeddings

* Fix position ids bug in embeddings

* Add minor changes

* Add conversion script and remove CausalLM vestiges

* Fix conversion script

* Fix conversion script

* Remove CausalLM Test

* Update checkpoint names to dummy checkpoints

* Add tokenizer mapping

* Fix modeling file and corresponding tests

* Add tokenization test file

* Add PreTraining model test

* Make style and quality

* Make tokenization base tests work

* Update docs

* Add FastTokenizer tests

* Fix fast tokenizer special tokens

* Fix style and quality

* Remove load_tf_weights vestiges

* Add FNet to  main README

* Fix configuration example indentation

* Comment tokenization slow test

* Fix style

* Add changes from review

* Fix style

* Remove bos and eos tokens from tokenizers

* Add tokenizer slow test, TPU transforms, NSP

* Add scipy check

* Add scipy availabilty check to test

* Fix tokenizer and use correct inputs

* Remove remaining TODOs

* Fix tests

* Fix tests

* Comment Fourier Test

* Uncomment Fourier Test

* Change to google checkpoint

* Add changes from review

* Fix activation function

* Fix model integration test

* Add more integration tests

* Add comparison steps to MLM integration test

* Fix style

* Add masked tokenization fix

* Improve mask tokenization fix

* Fix index docs

* Add changes from review

* Fix issue

* Fix failing import in test

* some more fixes

* correct fast tokenizer

* finalize

* make style

* Remove additional tokenization logic

* Set do_lower_case to False

* Allow keeping accents

* Fix tokenization test

* Fix FNet Tokenizer Fast

* fix tests

* make style

* Add tips to FNet docs
Co-authored-by: default avatarpatrickvonplaten <patrick.v.platen@gmail.com>
parent 87d5057d
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch FNet model. """
import unittest
from typing import Dict, List, Tuple
from transformers import FNetConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tokenizers, require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetModel,
FNetTokenizerFast,
)
from transformers.models.fnet.modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetBasicFourierTransform,
is_scipy_available,
)
# Override ConfigTester
class FNetConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
if self.has_text_modality:
self.parent.assertTrue(hasattr(config, "vocab_size"))
self.parent.assertTrue(hasattr(config, "hidden_size"))
self.parent.assertTrue(hasattr(config, "num_hidden_layers"))
class FNetModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
def get_config(self):
return FNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
tpu_short_seq_length=self.seq_length,
)
@require_torch
def create_and_check_fourier_transform(self, config):
hidden_states = floats_tensor([self.batch_size, self.seq_length, config.hidden_size])
transform = FNetBasicFourierTransform(config)
fftn_output = transform(hidden_states)
config.use_tpu_fourier_optimizations = True
if is_scipy_available():
transform = FNetBasicFourierTransform(config)
dft_output = transform(hidden_states)
config.max_position_embeddings = 4097
transform = FNetBasicFourierTransform(config)
fft_output = transform(hidden_states)
if is_scipy_available():
self.parent.assertTrue(torch.allclose(fftn_output[0][0], dft_output[0][0], atol=1e-4))
self.parent.assertTrue(torch.allclose(fft_output[0][0], dft_output[0][0], atol=1e-4))
self.parent.assertTrue(torch.allclose(fftn_output[0][0], fft_output[0][0], atol=1e-4))
def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels):
model = FNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
labels=token_labels,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_next_sentence_prediction(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = FNetForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = FNetForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = FNetForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids}
return config, inputs_dict
@require_torch
class FNetModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
FNetModel,
FNetForPreTraining,
FNetForMaskedLM,
FNetForNextSentencePrediction,
FNetForMultipleChoice,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
)
if is_torch_available()
else ()
)
# Skip Tests
test_pruning = False
test_torchscript = False
test_head_masking = False
test_pruning = False
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
# Overriden Tests
def test_attention_outputs(self):
pass
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
# tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
# dict_inputs = self._prepare_for_class(inputs_dict, model_class)
# check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
def setUp(self):
self.model_tester = FNetModelTester(self)
self.config_tester = FNetConfigTester(self, config_class=FNetConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in FNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class FNetModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_for_masked_lm(self):
"""
For comparison:
1. Modify the pre-training model `__call__` to skip computing metrics and return masked_lm_output like so:
```
...
sequence_output, pooled_output = EncoderModel(
self.config, random_seed=self.random_seed, name="encoder")(
input_ids, input_mask, type_ids, deterministic=deterministic)
masked_lm_output = nn.Dense(
self.config.d_emb,
kernel_init=default_kernel_init,
name="predictions_dense")(
sequence_output)
masked_lm_output = nn.gelu(masked_lm_output)
masked_lm_output = nn.LayerNorm(
epsilon=LAYER_NORM_EPSILON, name="predictions_layer_norm")(
masked_lm_output)
masked_lm_logits = layers.OutputProjection(
kernel=self._get_embedding_table(), name="predictions_output")(
masked_lm_output)
next_sentence_logits = layers.OutputProjection(
n_out=2, kernel_init=default_kernel_init, name="classification")(
pooled_output)
return masked_lm_logits
...
```
2. Run the following:
>>> import jax.numpy as jnp
>>> import sentencepiece as spm
>>> from flax.training import checkpoints
>>> from f_net.models import PreTrainingModel
>>> from f_net.configs.pretraining import get_config, ModelArchitecture
>>> pretrained_params = checkpoints.restore_checkpoint('./f_net/f_net_checkpoint', None) # Location of original checkpoint
>>> pretrained_config = get_config()
>>> pretrained_config.model_arch = ModelArchitecture.F_NET
>>> vocab_filepath = "./f_net/c4_bpe_sentencepiece.model" # Location of the sentence piece model
>>> tokenizer = spm.SentencePieceProcessor()
>>> tokenizer.Load(vocab_filepath)
>>> with pretrained_config.unlocked():
>>> pretrained_config.vocab_size = tokenizer.GetPieceSize()
>>> tokens = jnp.array([[0, 1, 2, 3, 4, 5]])
>>> type_ids = jnp.zeros_like(tokens, dtype="i4")
>>> attention_mask = jnp.ones_like(tokens) # Dummy. This gets deleted inside the model.
>>> flax_pretraining_model = PreTrainingModel(pretrained_config)
>>> pretrained_model_params = freeze(pretrained_params['target'])
>>> flax_model_outputs = flax_pretraining_model.apply({"params": pretrained_model_params}, tokens, attention_mask, type_ids, None, None, None, None, deterministic=True)
>>> masked_lm_logits[:, :3, :3]
"""
model = FNetForMaskedLM.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
vocab_size = 32000
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-1.7819, -7.7384, -7.5002], [-3.4746, -8.5943, -7.7762], [-3.2052, -9.0771, -8.3468]]],
device=torch_device,
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
@require_tokenizers
def test_inference_long_sentence(self):
model = FNetForMaskedLM.from_pretrained("google/fnet-base")
model.to(torch_device)
tokenizer = FNetTokenizerFast.from_pretrained("google/fnet-base")
inputs = tokenizer(
"the man worked as a [MASK].",
"this is his [MASK].",
return_tensors="pt",
padding="max_length",
max_length=512,
)
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
logits = model(**inputs).logits
predictions_mask_1 = tokenizer.decode(logits[0, 6].topk(5).indices)
predictions_mask_2 = tokenizer.decode(logits[0, 12].topk(5).indices)
self.assertEqual(predictions_mask_1.split(" "), ["man", "child", "teacher", "woman", "model"])
self.assertEqual(predictions_mask_2.split(" "), ["work", "wife", "job", "story", "name"])
@slow
def test_inference_for_next_sentence_prediction(self):
model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[-0.2234, -0.0226]], device=torch_device)
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
@slow
def test_inference_model(self):
model = FNetModel.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, model.config.hidden_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[4.1541, -0.1051, -0.1667], [-0.9144, 0.2939, -0.0086], [-0.8472, -0.7281, 0.0256]]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
# coding=utf-8
# Copyright 2019 Hugging Face inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import FNetTokenizer, FNetTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_tokenizers, slow
from .test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class FNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = FNetTokenizer
rust_tokenizer_class = FNetTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = True
test_sentencepiece_ignore_case = True
test_seq2seq = False
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = FNetTokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
def get_input_output_texts(self, tokenizer):
input_text = "this is a test"
output_text = "this is a test"
return input_text, output_text
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "<pad>"
token_id = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "<pad>")
self.assertEqual(vocab_keys[1], "<unk>")
self.assertEqual(vocab_keys[-1], "▁eloquent")
self.assertEqual(len(vocab_keys), 30_000)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 30_000)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "I was born in 92000, and this is falsé."
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_full_tokenizer(self):
tokenizer = FNetTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁", "T", "his", "▁is", "▁a", "▁test"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [13, 1, 4398, 25, 21, 1289])
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
"▁",
"<unk>",
"▁was",
"▁born",
"▁in",
"▁9",
"2000",
",",
"▁and",
"▁this",
"▁is",
"▁fal",
"s",
"<unk>",
".",
],
)
def test_sequence_builders(self):
tokenizer = FNetTokenizer(SAMPLE_VOCAB)
text = tokenizer.encode("sequence builders")
text_2 = tokenizer.encode("multi-sequence build")
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
tokenizer.sep_token_id
]
# Overriden Tests
def test_padding(self, max_length=50):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
# Encode - Simple input
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", padding="longest")
input_p = tokenizer_p.encode("This is a simple input", padding=True)
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode - Pair input
input_r = tokenizer_r.encode(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode_plus - Simple input
input_r = tokenizer_r.encode_plus(
"This is a simple input", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus(
"This is a simple input", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Encode_plus - Pair input
input_r = tokenizer_r.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Batch_encode_plus - Simple input
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
pad_to_max_length=True,
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
pad_to_max_length=True,
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="longest",
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding=True,
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"], padding="longest"
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"], padding=True
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Batch_encode_plus - Pair input
input_r = tokenizer_r.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
max_length=max_length,
truncation=True,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
max_length=max_length,
truncation=True,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
padding=True,
)
input_p = tokenizer_p.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
padding="longest",
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus("This is a input 1")
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.encode_plus("This is a input 1")
input_p = tokenizer_r.pad(input_p)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus("This is a input 1")
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.encode_plus("This is a input 1")
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
# Using pad after tokenization
input_r = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_p = tokenizer_r.pad(input_p)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad after tokenization
input_r = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
def assert_batch_padded_input_match(
self,
input_r: dict,
input_p: dict,
max_length: int,
pad_token_id: int,
model_main_input_name: str = "input_ids",
):
for i_r in input_r.values():
self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
len(i_r[1]), max_length
)
self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
len(i_r[1]), max_length
)
for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[4, 4616, 107, 163, 328, 14, 63, 1726, 106, 11954, 16659, 23, 83, 16688, 11427, 328, 107, 36, 11954, 16659, 23, 83, 16688, 6153, 82, 961, 16688, 3474, 16710, 1696, 2306, 16688, 10854, 2524, 3827, 561, 163, 3474, 16680, 62, 226, 2092, 16680, 379, 3474, 16660, 16680, 2436, 16667, 16671, 16680, 999, 87, 3474, 16680, 2436, 16667, 5208, 800, 16710, 68, 2018, 2959, 3037, 163, 16663, 11617, 16710, 36, 2018, 2959, 4737, 163, 16663, 16667, 16674, 16710, 91, 372, 5087, 16745, 2205, 82, 961, 3608, 38, 1770, 16745, 7984, 36, 2565, 751, 9017, 1204, 864, 218, 1244, 16680, 11954, 16659, 23, 83, 36, 14686, 23, 7619, 16678, 5], [4, 28, 532, 65, 1929, 33, 391, 16688, 3979, 9, 2565, 7849, 299, 225, 34, 2040, 305, 167, 289, 16667, 16078, 32, 1966, 181, 4626, 63, 10575, 71, 851, 1491, 36, 624, 4757, 38, 208, 8038, 16678, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3], [4, 13, 1467, 5187, 26, 2521, 4567, 16664, 372, 13, 16209, 3314, 16678, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="google/fnet-base",
revision="58e0d1f96af163dc8d0a84a2fddf4bd403e4e802",
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment