Unverified Commit d752337b authored by Wang, Yi's avatar Wang, Yi Committed by GitHub
Browse files

QnA example: add speed metric (#20522)

parent b67ac442
...@@ -15,9 +15,11 @@ ...@@ -15,9 +15,11 @@
""" """
A subclass of `Trainer` specific to Question-Answering tasks A subclass of `Trainer` specific to Question-Answering tasks
""" """
import math
import time
from transformers import Trainer, is_torch_tpu_available from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False): if is_torch_tpu_available(check_device=False):
...@@ -40,6 +42,7 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -40,6 +42,7 @@ class QuestionAnsweringTrainer(Trainer):
compute_metrics = self.compute_metrics compute_metrics = self.compute_metrics
self.compute_metrics = None self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
start_time = time.time()
try: try:
output = eval_loop( output = eval_loop(
eval_dataloader, eval_dataloader,
...@@ -51,7 +54,15 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -51,7 +54,15 @@ class QuestionAnsweringTrainer(Trainer):
) )
finally: finally:
self.compute_metrics = compute_metrics self.compute_metrics = compute_metrics
total_batch_size = self.args.eval_batch_size * self.args.world_size
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default # Only the main node write the results by default
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions) eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions)
...@@ -61,6 +72,7 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -61,6 +72,7 @@ class QuestionAnsweringTrainer(Trainer):
for key in list(metrics.keys()): for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"): if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
metrics.update(output.metrics)
else: else:
metrics = {} metrics = {}
...@@ -82,6 +94,7 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -82,6 +94,7 @@ class QuestionAnsweringTrainer(Trainer):
compute_metrics = self.compute_metrics compute_metrics = self.compute_metrics
self.compute_metrics = None self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
start_time = time.time()
try: try:
output = eval_loop( output = eval_loop(
predict_dataloader, predict_dataloader,
...@@ -93,6 +106,15 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -93,6 +106,15 @@ class QuestionAnsweringTrainer(Trainer):
) )
finally: finally:
self.compute_metrics = compute_metrics self.compute_metrics = compute_metrics
total_batch_size = self.args.eval_batch_size * self.args.world_size
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
if self.post_process_function is None or self.compute_metrics is None: if self.post_process_function is None or self.compute_metrics is None:
return output return output
...@@ -104,5 +126,5 @@ class QuestionAnsweringTrainer(Trainer): ...@@ -104,5 +126,5 @@ class QuestionAnsweringTrainer(Trainer):
for key in list(metrics.keys()): for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"): if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key) metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment