Unverified Commit d68c4602 authored by amyeroberts's avatar amyeroberts Committed by GitHub
Browse files

Update defaults and logic to match old FE (#20065)

* Update defaults and logic to match old FE

* Use docker run rest values
parent c06d5556
......@@ -361,7 +361,6 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
images = [flip_channel_order(image) for image in images]
images = [to_channel_dimension_format(image, data_format) for image in images]
data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
......
......@@ -24,8 +24,8 @@ from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
......@@ -61,7 +61,7 @@ class PerceiverImageProcessor(BaseImageProcessor):
parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter
in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
......@@ -89,7 +89,7 @@ class PerceiverImageProcessor(BaseImageProcessor):
crop_size: Dict[str, int] = None,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
......@@ -111,8 +111,8 @@ class PerceiverImageProcessor(BaseImageProcessor):
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def center_crop(
self,
......@@ -153,7 +153,7 @@ class PerceiverImageProcessor(BaseImageProcessor):
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PIL.Image.BILINEAR,
resample: PILImageResampling = PIL.Image.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
......@@ -165,7 +165,7 @@ class PerceiverImageProcessor(BaseImageProcessor):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BILINEAR`):
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
Resampling filter to use when resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
......
......@@ -31,8 +31,8 @@ from ...image_transforms import (
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
......@@ -133,8 +133,8 @@ class PoolFormerImageProcessor(BaseImageProcessor):
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
......
......@@ -25,8 +25,8 @@ from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
......@@ -115,15 +115,15 @@ class SegformerImageProcessor(BaseImageProcessor):
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs
) -> np.ndarray:
......@@ -135,7 +135,7 @@ class SegformerImageProcessor(BaseImageProcessor):
Image to resize.
size (`Dict[str, int]`):
Size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`):
resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BILINEAR`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
......
......@@ -903,7 +903,7 @@ class PerceiverModelIntegrationTest(unittest.TestCase):
expected_shape = torch.Size((1, model.config.num_labels))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor([-1.1653, -0.1993, -0.7521], device=torch_device)
expected_slice = torch.tensor([-1.1652, -0.1992, -0.7520], device=torch_device)
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment