"docs/source/vscode:/vscode.git/clone" did not exist on "9ecd83dace3961eaa161405814b00ea595c86451"
Commit d64db6df authored by lukovnikov's avatar lukovnikov
Browse files

clean up pr

parent 7ba83730
......@@ -25,10 +25,7 @@ import six
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
ACT2FN = {"gelu": gelu, "relu": torch.nn.ReLU, "swish": swish}
from six import string_types
def gelu(x):
"""Implementation of the gelu activation function.
......@@ -42,6 +39,9 @@ def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class BertConfig(object):
"""Configuration class to store the configuration of a `BertModel`.
"""
......@@ -68,7 +68,7 @@ class BertConfig(object):
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" supported.
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
......@@ -246,7 +246,7 @@ class BERTIntermediate(nn.Module):
super(BERTIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
if isinstance(config.hidden_act, string_types) else config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment