Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d625294d
Unverified
Commit
d625294d
authored
Jul 11, 2024
by
Raushan Turganbay
Committed by
GitHub
Jul 11, 2024
Browse files
InstructBlipVideo: Update docstring (#31886)
* update docs * one more change
parent
c54af4c7
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
14 deletions
+18
-14
src/transformers/models/instructblipvideo/diff_instructblipvideo.py
...ormers/models/instructblipvideo/diff_instructblipvideo.py
+9
-7
src/transformers/models/instructblipvideo/modeling_instructblipvideo.py
...rs/models/instructblipvideo/modeling_instructblipvideo.py
+9
-7
No files found.
src/transformers/models/instructblipvideo/diff_instructblipvideo.py
View file @
d625294d
...
...
@@ -158,7 +158,8 @@ class InstructBlipVideoForConditionalGeneration(InstructBlipForConditionalGenera
>>> from transformers import InstructBlipVideoProcessor, InstructBlipVideoForConditionalGeneration
>>> import torch
>>> from huggingface_hub import hf_hub_download
>>> from av
>>> import av
>>> import numpy as np
>>> def read_video_pyav(container, indices):
... '''
...
...
@@ -180,20 +181,21 @@ class InstructBlipVideoForConditionalGeneration(InstructBlipForConditionalGenera
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> model = InstructBlipVideo
Processor
.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto")
>>> processor = InstructBlipVideo
ForConditionalGeneration
.from_pretrained("Salesforce/instructblip-vicuna-7b")
>>> model = InstructBlipVideo
ForConditionalGeneration
.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto")
>>> processor = InstructBlipVideo
Processor
.from_pretrained("Salesforce/instructblip-vicuna-7b")
>>> file_path = hf_hub_download(
repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
)
>>> container = av.open(video_path)
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample uniformly 4 frames from the videWhy is this video funny?o
>>> total_frames = container.streams.video[0].frames
>>> indices = np.arange(0, total_frames, total_frames / 4).astype(int)
>>> clip = read_video_pyav(container, indices)
>>> prompt = "What is happening in the video?"
>>> inputs = processor(
videos=clip, text=prompt
, return_tensors="pt").to(device)
>>> inputs = processor(
text=prompt, images=clip
, return_tensors="pt").to(
model.
device)
>>> outputs = model.generate(
... **inputs,
...
...
src/transformers/models/instructblipvideo/modeling_instructblipvideo.py
View file @
d625294d
...
...
@@ -1393,7 +1393,8 @@ class InstructBlipVideoForConditionalGeneration(InstructBlipVideoPreTrainedModel
>>> from transformers import InstructBlipVideoProcessor, InstructBlipVideoForConditionalGeneration
>>> import torch
>>> from huggingface_hub import hf_hub_download
>>> from av
>>> import av
>>> import numpy as np
>>> def read_video_pyav(container, indices):
... '''
...
...
@@ -1415,20 +1416,21 @@ class InstructBlipVideoForConditionalGeneration(InstructBlipVideoPreTrainedModel
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> model = InstructBlipVideo
Processor
.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto")
>>> processor = InstructBlipVideo
ForConditionalGeneration
.from_pretrained("Salesforce/instructblip-vicuna-7b")
>>> model = InstructBlipVideo
ForConditionalGeneration
.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto")
>>> processor = InstructBlipVideo
Processor
.from_pretrained("Salesforce/instructblip-vicuna-7b")
>>> file_path = hf_hub_download(
repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
)
>>> container = av.open(video_path)
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample uniformly 4 frames from the videWhy is this video funny?o
>>> total_frames = container.streams.video[0].frames
>>> indices = np.arange(0, total_frames, total_frames / 4).astype(int)
>>> clip = read_video_pyav(container, indices)
>>> prompt = "What is happening in the video?"
>>> inputs = processor(
videos=clip, text=prompt
, return_tensors="pt").to(device)
>>> inputs = processor(
text=prompt, images=clip
, return_tensors="pt").to(
model.
device)
>>> outputs = model.generate(
... **inputs,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment