Unverified Commit d5712f7c authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into check-link-validity

parents f230d91b 9c58b236
......@@ -252,7 +252,7 @@ class CTRLModel(CTRLPreTrainedModel):
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
......@@ -438,7 +438,7 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
......
......@@ -329,7 +329,7 @@ class GPT2Model(GPT2PreTrainedModel):
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
......@@ -503,7 +503,7 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
......@@ -596,7 +596,7 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
......
......@@ -50,8 +50,10 @@ def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
with open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8') as names_handle:
names = json.load(names_handle)
with open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8') as shapes_handle:
shapes = json.load(shapes_handle)
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
......
......@@ -48,6 +48,10 @@ TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5",
'bert-base-japanese': "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-tf_model.h5",
'bert-base-japanese-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-tf_model.h5",
'bert-base-japanese-char': "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-tf_model.h5",
'bert-base-japanese-char-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-tf_model.h5"
}
......@@ -129,7 +133,7 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
linear tensor, float32 with shape [batch_size, length, vocab_size].
Raises:
ValueError: if mode is not valid.
Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
......@@ -148,7 +152,7 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
input_shape = shape_list(input_ids)
else:
input_shape = shape_list(inputs_embeds)[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
......@@ -246,7 +250,7 @@ class TFBertSelfAttention(tf.keras.layers.Layer):
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
context_layer = tf.reshape(context_layer,
context_layer = tf.reshape(context_layer,
(batch_size, -1, self.all_head_size)) # (batch_size, seq_len_q, all_head_size)
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
......@@ -591,7 +595,7 @@ BERT_START_DOCSTRING = r""" The BERT model was proposed in
`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
Parameters:
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
......@@ -605,13 +609,13 @@ BERT_INPUTS_DOCSTRING = r"""
(a) For sequence pairs:
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1``
(b) For single sequences:
``tokens: [CLS] the dog is hairy . [SEP]``
``token_type_ids: 0 0 0 0 0 0 0``
Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
......
......@@ -400,7 +400,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
**last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
......@@ -462,7 +462,7 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
......
......@@ -704,6 +704,53 @@ class TFDistilBertForSequenceClassification(TFDistilBertPreTrainedModel):
return outputs # logits, (hidden_states), (attentions)
@add_start_docstrings("""DistilBert Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
class TFDistilBertForTokenClassification(TFDistilBertPreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import DistilBertTokenizer, TFDistilBertForTokenClassification
tokenizer = DistilBertTokenizer.from_pretrained('bert-base-uncased')
model = TFDistilBertForTokenClassification.from_pretrained('bert-base-uncased')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
scores = outputs[0]
"""
def __init__(self, config, *inputs, **kwargs):
super(TFDistilBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.distilbert = TFDistilBertMainLayer(config, name='distilbert')
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.classifier = tf.keras.layers.Dense(config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name='classifier')
def call(self, inputs, **kwargs):
outputs = self.distilbert(inputs, **kwargs)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=kwargs.get('training', False))
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
return outputs # scores, (hidden_states), (attentions)
@add_start_docstrings("""DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
DISTILBERT_START_DOCSTRING, DISTILBERT_INPUTS_DOCSTRING)
......
......@@ -436,7 +436,7 @@ class TFGPT2Model(TFGPT2PreTrainedModel):
**last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of ``tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
......@@ -476,7 +476,7 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
**prediction_scores**: `tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of `tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of `tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
......@@ -535,7 +535,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
**mc_prediction_scores**: `tf.Tensor`` of shape ``(batch_size, num_choices)``
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
**past**:
list of `tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
list of `tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
......
......@@ -24,7 +24,8 @@ import os
import tensorflow as tf
from .configuration_utils import PretrainedConfig
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME
from .file_utils import (TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME,
cached_path, hf_bucket_url, is_remote_url)
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
logger = logging.getLogger(__name__)
......@@ -257,10 +258,14 @@ class TFPreTrainedModel(tf.keras.Model):
raise EnvironmentError("Error no file named {} found in directory {} or `from_pt` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME],
pretrained_model_name_or_path))
elif os.path.isfile(pretrained_model_name_or_path):
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
archive_file = pretrained_model_name_or_path + ".index"
else:
raise EnvironmentError("Error file {} not found".format(pretrained_model_name_or_path))
archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=TF2_WEIGHTS_NAME)
if from_pt:
raise EnvironmentError("Loading a TF model from a PyTorch checkpoint is not supported when using a model identifier name.")
# redirect to the cache, if necessary
try:
......
......@@ -31,7 +31,8 @@ from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from .configuration_utils import PretrainedConfig
from .file_utils import cached_path, WEIGHTS_NAME, TF_WEIGHTS_NAME, TF2_WEIGHTS_NAME
from .file_utils import (TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, WEIGHTS_NAME,
cached_path, hf_bucket_url, is_remote_url)
logger = logging.getLogger(__name__)
......@@ -318,7 +319,8 @@ class PreTrainedModel(nn.Module):
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
if "albert" in pretrained_model_name_or_path and "v2" in pretrained_model_name_or_path:
if pretrained_model_name_or_path is not None and (
"albert" in pretrained_model_name_or_path and "v2" in pretrained_model_name_or_path):
logger.warning("There is currently an upstream reproducibility issue with ALBERT v2 models. Please see " +
"https://github.com/google-research/google-research/issues/119 for more information.")
......@@ -362,11 +364,16 @@ class PreTrainedModel(nn.Module):
raise EnvironmentError("Error no file named {} found in directory {} or `from_tf` set to False".format(
[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + ".index"],
pretrained_model_name_or_path))
elif os.path.isfile(pretrained_model_name_or_path):
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
else:
assert from_tf, "Error finding file {}, no file or TF 1.X checkpoint found".format(pretrained_model_name_or_path)
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert from_tf, "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index")
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(pretrained_model_name_or_path, postfix=WEIGHTS_NAME)
if from_tf:
raise EnvironmentError("Loading a PyTorch model from a TF checkpoint is not supported when using a model identifier name.")
# redirect to the cache, if necessary
try:
......
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions and classes related to optimization (weight updates)."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import tensorflow as tf
class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Applys a warmup schedule on a given learning rate decay schedule."""
def __init__(
self,
initial_learning_rate,
decay_schedule_fn,
warmup_steps,
power=1.0,
name=None):
super(WarmUp, self).__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.power = power
self.decay_schedule_fn = decay_schedule_fn
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or 'WarmUp') as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
global_step_float = tf.cast(step, tf.float32)
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
warmup_percent_done = global_step_float / warmup_steps_float
warmup_learning_rate = (
self.initial_learning_rate *
tf.math.pow(warmup_percent_done, self.power))
return tf.cond(global_step_float < warmup_steps_float,
lambda: warmup_learning_rate,
lambda: self.decay_schedule_fn(step),
name=name)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'decay_schedule_fn': self.decay_schedule_fn,
'warmup_steps': self.warmup_steps,
'power': self.power,
'name': self.name
}
def create_optimizer(init_lr, num_train_steps, num_warmup_steps):
"""Creates an optimizer with learning rate schedule."""
# Implements linear decay of the learning rate.
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=init_lr,
decay_steps=num_train_steps,
end_learning_rate=0.0)
if num_warmup_steps:
learning_rate_fn = WarmUp(initial_learning_rate=init_lr,
decay_schedule_fn=learning_rate_fn,
warmup_steps=num_warmup_steps)
optimizer = AdamWeightDecay(
learning_rate=learning_rate_fn,
weight_decay_rate=0.01,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-6,
exclude_from_weight_decay=['layer_norm', 'bias'])
return optimizer
class AdamWeightDecay(tf.keras.optimizers.Adam):
"""Adam enables L2 weight decay and clip_by_global_norm on gradients.
Just adding the square of the weights to the loss function is *not* the
correct way of using L2 regularization/weight decay with Adam, since that will
interact with the m and v parameters in strange ways.
Instead we want ot decay the weights in a manner that doesn't interact with
the m/v parameters. This is equivalent to adding the square of the weights to
the loss with plain (non-momentum) SGD.
"""
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
amsgrad=False,
weight_decay_rate=0.0,
include_in_weight_decay=None,
exclude_from_weight_decay=None,
name='AdamWeightDecay',
**kwargs):
super(AdamWeightDecay, self).__init__(
learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
self.weight_decay_rate = weight_decay_rate
self._include_in_weight_decay = include_in_weight_decay
self._exclude_from_weight_decay = exclude_from_weight_decay
@classmethod
def from_config(cls, config):
"""Creates an optimizer from its config with WarmUp custom object."""
custom_objects = {'WarmUp': WarmUp}
return super(AdamWeightDecay, cls).from_config(
config, custom_objects=custom_objects)
def _prepare_local(self, var_device, var_dtype, apply_state):
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype,
apply_state)
apply_state['weight_decay_rate'] = tf.constant(
self.weight_decay_rate, name='adam_weight_decay_rate')
def _decay_weights_op(self, var, learning_rate, apply_state):
do_decay = self._do_use_weight_decay(var.name)
if do_decay:
return var.assign_sub(
learning_rate * var *
apply_state['weight_decay_rate'],
use_locking=self._use_locking)
return tf.no_op()
def apply_gradients(self, grads_and_vars, clip_norm, name=None):
grads, tvars = list(zip(*grads_and_vars))
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=clip_norm)
return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars))
def _get_lr(self, var_device, var_dtype, apply_state):
"""Retrieves the learning rate with the given state."""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
apply_state = apply_state or {}
coefficients = apply_state.get((var_device, var_dtype))
if coefficients is None:
coefficients = self._fallback_apply_state(var_device, var_dtype)
apply_state[(var_device, var_dtype)] = coefficients
return coefficients['lr_t'], dict(apply_state=apply_state)
def _resource_apply_dense(self, grad, var, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_dense(
grad, var, **kwargs)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
decay = self._decay_weights_op(var, lr_t, apply_state)
with tf.control_dependencies([decay]):
return super(AdamWeightDecay, self)._resource_apply_sparse(
grad, var, indices, **kwargs)
def get_config(self):
config = super(AdamWeightDecay, self).get_config()
config.update({
'weight_decay_rate': self.weight_decay_rate,
})
return config
def _do_use_weight_decay(self, param_name):
"""Whether to use L2 weight decay for `param_name`."""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(r, param_name) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(r, param_name) is not None:
return False
return True
## Inspired from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py
class GradientAccumulator(object):
"""Distribution strategies-aware gradient accumulation utility."""
def __init__(self):
"""Initializes the accumulator."""
self._gradients = []
self._accum_steps = tf.Variable(
initial_value=0,
dtype=tf.int64,
trainable=False,
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
@property
def step(self):
"""Number of accumulated steps."""
return self._accum_steps.value()
@property
def gradients(self):
"""The accumulated gradients."""
return list(gradient.value() if gradient is not None else gradient for gradient in self._get_replica_gradients())
def __call__(self, gradients):
"""Accumulates :obj:`gradients`."""
if not self._gradients:
self._gradients.extend([tf.Variable(tf.zeros_like(gradient), trainable=False) if gradient is not None else gradient for gradient in gradients])
if len(gradients) != len(self._gradients):
raise ValueError("Expected %s gradients, but got %d" % (len(self._gradients), len(gradients)))
for accum_gradient, gradient in zip(self._get_replica_gradients(), gradients):
if accum_gradient is not None:
accum_gradient.assign_add(gradient)
self._accum_steps.assign_add(1)
def reset(self):
"""Resets the accumulated gradients."""
if self._gradients:
self._accum_steps.assign(0)
for gradient in self._get_replica_gradients():
if gradient is not None:
gradient.assign(tf.zeros_like(gradient))
def _get_replica_gradients(self):
if tf.distribute.has_strategy():
# In a replica context, we want to accumulate gradients on each replica
# without synchronization, so we directly assign the value of the
# current replica.
replica_context = tf.distribute.get_replica_context()
if replica_context is None or tf.distribute.get_strategy().num_replicas_in_sync == 1:
return self._gradients
return (gradient.device_map.select_for_current_replica(gradient.values, replica_context) for gradient in self._gradients)
else:
return self._gradients
# content of conftest.py
import pytest
def pytest_addoption(parser):
parser.addoption(
"--runslow", action="store_true", default=False, help="run slow tests"
)
parser.addoption(
"--use_cuda", action="store_true", default=False, help="run tests on gpu"
)
def pytest_configure(config):
config.addinivalue_line("markers", "slow: mark test as slow to run")
def pytest_collection_modifyitems(config, items):
if config.getoption("--runslow"):
# --runslow given in cli: do not skip slow tests
return
skip_slow = pytest.mark.skip(reason="need --runslow option to run")
for item in items:
if "slow" in item.keywords:
item.add_marker(skip_slow)
@pytest.fixture
def use_cuda(request):
""" Run test on gpu """
return request.config.getoption("--use_cuda")
......@@ -18,22 +18,21 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
if is_torch_available():
from transformers import (AlbertConfig, AlbertModel, AlbertForMaskedLM,
AlbertForSequenceClassification, AlbertForQuestionAnswering,
)
from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class AlbertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (AlbertModel, AlbertForMaskedLM) if is_torch_available() else ()
......@@ -133,6 +132,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
......@@ -150,6 +150,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
......@@ -163,6 +164,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_albert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
......@@ -183,6 +185,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_albert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = AlbertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
......@@ -225,7 +228,7 @@ class AlbertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -18,11 +18,12 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import logging
from transformers import is_torch_available
from .utils import require_torch, slow, SMALL_MODEL_IDENTIFIER
if is_torch_available():
from transformers import (AutoConfig, BertConfig,
AutoModel, BertModel,
......@@ -33,12 +34,11 @@ if is_torch_available():
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class AutoModelTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -53,7 +53,7 @@ class AutoModelTest(unittest.TestCase):
for value in loading_info.values():
self.assertEqual(len(value), 0)
@pytest.mark.slow
@slow
def test_lmhead_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -66,7 +66,7 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForMaskedLM)
@pytest.mark.slow
@slow
def test_sequence_classification_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -79,7 +79,7 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForSequenceClassification)
@pytest.mark.slow
@slow
def test_question_answering_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......@@ -92,6 +92,11 @@ class AutoModelTest(unittest.TestCase):
self.assertIsNotNone(model)
self.assertIsInstance(model, BertForQuestionAnswering)
def test_from_pretrained_identifier(self):
logging.basicConfig(level=logging.INFO)
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(model, BertForMaskedLM)
if __name__ == "__main__":
unittest.main()
......@@ -18,12 +18,12 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor, floats_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
if is_torch_available():
from transformers import (BertConfig, BertModel, BertForMaskedLM,
......@@ -31,11 +31,9 @@ if is_torch_available():
BertForQuestionAnswering, BertForSequenceClassification,
BertForTokenClassification, BertForMultipleChoice)
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@pytest.mark.usefixtures("use_cuda")
@require_torch
class BertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (BertModel, BertForMaskedLM, BertForNextSentencePrediction,
......@@ -67,7 +65,6 @@ class BertModelTest(CommonTestCases.CommonModelTester):
num_labels=3,
num_choices=4,
scope=None,
device='cpu',
):
self.parent = parent
self.batch_size = batch_size
......@@ -91,26 +88,25 @@ class BertModelTest(CommonTestCases.CommonModelTester):
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.device = device
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).to(self.device)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2).to(self.device)
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size).to(self.device)
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size).to(self.device)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels).to(self.device)
choice_labels = ids_tensor([self.batch_size], self.num_choices).to(self.device)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size_or_config_json_file=self.vocab_size,
......@@ -144,7 +140,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertModel(config=config)
model.to(input_ids.device)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
......@@ -161,6 +157,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model_as_decoder(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask):
model = BertModel(config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask)
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states)
......@@ -177,6 +174,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
......@@ -190,6 +188,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_model_for_masked_lm_as_decoder(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask):
model = BertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask)
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels, encoder_hidden_states=encoder_hidden_states)
......@@ -204,6 +203,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_next_sequence_prediction(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
loss, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, next_sentence_label=sequence_labels)
result = {
......@@ -217,6 +217,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_pretraining(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores, seq_relationship_score = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
masked_lm_labels=token_labels, next_sentence_label=sequence_labels)
......@@ -235,6 +236,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = BertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
......@@ -254,6 +256,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = BertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
......@@ -268,6 +271,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = BertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
......@@ -282,6 +286,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_bert_for_multiple_choice(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_choices = self.num_choices
model = BertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
......@@ -313,10 +318,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
def test_config(self):
self.config_tester.run_common_tests()
def test_bert_model(self, use_cuda=False):
# ^^ This could be a real fixture
if use_cuda:
self.model_tester.device = "cuda"
def test_bert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_model(*config_and_inputs)
......@@ -356,7 +358,7 @@ class BertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -27,10 +27,11 @@ import uuid
import unittest
import logging
import pytest
from transformers import is_torch_available
from .utils import require_torch, slow, torch_device
if is_torch_available():
import torch
import numpy as np
......@@ -38,8 +39,6 @@ if is_torch_available():
from transformers import (AdaptiveEmbedding, PretrainedConfig, PreTrainedModel,
BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require Torch")
if sys.version_info[0] == 2:
import cPickle as pickle
......@@ -65,6 +64,7 @@ def _config_zero_init(config):
class CommonTestCases:
@require_torch
class CommonModelTester(unittest.TestCase):
model_tester = None
......@@ -79,6 +79,7 @@ class CommonTestCases:
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs_dict)
......@@ -86,12 +87,13 @@ class CommonTestCases:
with TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
after_outputs = model(**inputs_dict)
# Make sure we don't have nans
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
out_1 = after_outputs[0].cpu().numpy()
out_2 = outputs[0].cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
......@@ -113,6 +115,7 @@ class CommonTestCases:
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
first, second = model(inputs_dict["input_ids"])[0], model(inputs_dict["input_ids"])[0]
self.assertEqual(first.ne(second).sum().item(), 0)
......@@ -125,6 +128,7 @@ class CommonTestCases:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
model.to(torch_device)
model.eval()
outputs = model(**inputs_dict)
attentions = outputs[-1]
......@@ -142,6 +146,7 @@ class CommonTestCases:
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
model.to(torch_device)
model.eval()
outputs = model(**inputs_dict)
self.assertEqual(out_len+1, len(outputs))
......@@ -181,6 +186,7 @@ class CommonTestCases:
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = inputs_dict['input_ids'] # Let's keep only input_ids
......@@ -201,7 +207,10 @@ class CommonTestCases:
except ValueError:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_params = model.parameters()
......@@ -228,11 +237,12 @@ class CommonTestCases:
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
# Prepare head_mask
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads)
head_mask = torch.ones(self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device)
head_mask[0, 0] = 0
head_mask[-1, :-1] = 0
head_mask.requires_grad_(requires_grad=True)
......@@ -282,6 +292,7 @@ class CommonTestCases:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
-1: [0]}
......@@ -310,6 +321,7 @@ class CommonTestCases:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {0: list(range(1, self.model_tester.num_attention_heads)),
-1: [0]}
......@@ -319,6 +331,7 @@ class CommonTestCases:
os.makedirs(directory)
model.save_pretrained(directory)
model = model_class.from_pretrained(directory)
model.to(torch_device)
outputs = model(**inputs_dict)
attentions = outputs[-1]
......@@ -346,6 +359,7 @@ class CommonTestCases:
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
outputs = model(**inputs_dict)
......@@ -372,6 +386,7 @@ class CommonTestCases:
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
outputs = model(**inputs_dict)
......@@ -388,6 +403,7 @@ class CommonTestCases:
os.makedirs(directory)
model.save_pretrained(directory)
model = model_class.from_pretrained(directory)
model.to(torch_device)
shutil.rmtree(directory)
outputs = model(**inputs_dict)
......@@ -419,6 +435,7 @@ class CommonTestCases:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
model.to(torch_device)
model.eval()
outputs = model(**inputs_dict)
hidden_states = outputs[-1]
......@@ -538,6 +555,7 @@ class CommonTestCases:
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
wte = model.get_input_embeddings()
......@@ -628,6 +646,7 @@ class CommonTestCases:
def create_and_check_base_model(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.base_model_class(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, position_ids, token_type_ids)
......@@ -643,6 +662,7 @@ class CommonTestCases:
def create_and_check_lm_head(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.lm_head_model_class(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, position_ids, token_type_ids, lm_labels)
loss, lm_logits = outputs[:2]
......@@ -659,6 +679,7 @@ class CommonTestCases:
mc_labels, lm_labels, mc_token_ids):
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
presents = outputs[-1]
......@@ -671,6 +692,7 @@ class CommonTestCases:
def create_and_check_double_heads(self, config, input_ids, token_type_ids, position_ids,
mc_labels, lm_labels, mc_token_ids):
model = self.double_head_model_class(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels,
token_type_ids=token_type_ids, position_ids=position_ids)
......@@ -716,7 +738,7 @@ class CommonTestCases:
config_and_inputs = self.prepare_config_and_inputs()
self.create_and_check_presents(*config_and_inputs)
@pytest.mark.slow
@slow
def run_slow_tests(self):
self.create_and_check_model_from_pretrained()
......@@ -770,7 +792,7 @@ def ids_tensor(shape, vocab_size, rng=None, name=None):
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
def floats_tensor(shape, scale=1.0, rng=None, name=None):
......@@ -786,11 +808,12 @@ def floats_tensor(shape, scale=1.0, rng=None, name=None):
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
@require_torch
class ModelUtilsTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -16,7 +16,6 @@ from __future__ import division
from __future__ import print_function
import unittest
import pytest
import shutil
import pdb
......@@ -25,13 +24,13 @@ from transformers import is_torch_available
if is_torch_available():
from transformers import (CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP,
CTRLLMHeadModel)
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class CTRLModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (CTRLModel, CTRLLMHeadModel) if is_torch_available() else ()
......@@ -140,6 +139,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
......@@ -157,6 +157,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
......@@ -202,7 +203,7 @@ class CTRLModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -17,7 +17,6 @@ from __future__ import division
from __future__ import print_function
import unittest
import pytest
from transformers import is_torch_available
......@@ -25,13 +24,13 @@ if is_torch_available():
from transformers import (DistilBertConfig, DistilBertModel, DistilBertForMaskedLM,
DistilBertForTokenClassification,
DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class DistilBertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (DistilBertModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering,
......@@ -126,6 +125,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_distilbert_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = DistilBertModel(config=config)
model.to(torch_device)
model.eval()
(sequence_output,) = model(input_ids, input_mask)
(sequence_output,) = model(input_ids)
......@@ -139,6 +139,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_distilbert_for_masked_lm(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = DistilBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, masked_lm_labels=token_labels)
result = {
......@@ -152,6 +153,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_distilbert_for_question_answering(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = DistilBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels)
result = {
......@@ -170,6 +172,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_distilbert_for_sequence_classification(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = DistilBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
result = {
......@@ -184,6 +187,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
def create_and_check_distilbert_for_token_classification(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = DistilBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
......@@ -229,7 +233,7 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)
# @pytest.mark.slow
# @slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -15,19 +15,18 @@
import logging
import unittest
import pytest
from transformers import is_torch_available
from .utils import require_torch, slow
if is_torch_available():
from transformers import BertModel, BertForMaskedLM, Model2Model
from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class EncoderDecoderModelTest(unittest.TestCase):
@pytest.mark.slow
@slow
def test_model2model_from_pretrained(self):
logging.basicConfig(level=logging.INFO)
for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -17,7 +17,6 @@ from __future__ import division
from __future__ import print_function
import unittest
import pytest
import shutil
from transformers import is_torch_available
......@@ -25,13 +24,13 @@ from transformers import is_torch_available
if is_torch_available():
from transformers import (GPT2Config, GPT2Model, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2LMHeadModel, GPT2DoubleHeadsModel)
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class GPT2ModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (GPT2Model, GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
......@@ -136,6 +135,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
......@@ -153,6 +153,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2LMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
......@@ -171,6 +172,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
def create_and_check_double_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args):
model = GPT2DoubleHeadsModel(config)
model.to(torch_device)
model.eval()
......@@ -235,7 +237,7 @@ class GPT2ModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
......@@ -17,7 +17,6 @@ from __future__ import division
from __future__ import print_function
import unittest
import pytest
import shutil
from transformers import is_torch_available
......@@ -25,13 +24,13 @@ from transformers import is_torch_available
if is_torch_available():
from transformers import (OpenAIGPTConfig, OpenAIGPTModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP,
OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel)
else:
pytestmark = pytest.mark.skip("Require Torch")
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
@require_torch
class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel) if is_torch_available() else ()
......@@ -124,6 +123,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
......@@ -139,6 +139,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
......@@ -157,6 +158,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTDoubleHeadsModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, lm_labels=input_ids)
......@@ -203,7 +205,7 @@ class OpenAIGPTModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment