Unverified Commit d5477baf authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Convert hans to Trainer (#5025)

* Convert hans to Trainer

* Tick box
parent c852036b
......@@ -27,7 +27,7 @@ This is still a work-in-progress – in particular documentation is still sparse
| [**`summarization`**](https://github.com/huggingface/transformers/tree/master/examples/summarization) | CNN/Daily Mail | - | - | - | -
| [**`translation`**](https://github.com/huggingface/transformers/tree/master/examples/translation) | WMT | - | - | - | -
| [**`bertology`**](https://github.com/huggingface/transformers/tree/master/examples/bertology) | - | - | - | - | -
| [**`adversarial`**](https://github.com/huggingface/transformers/tree/master/examples/adversarial) | HANS | - | - | - | -
| [**`adversarial`**](https://github.com/huggingface/transformers/tree/master/examples/adversarial) | HANS | | - | - | -
<br>
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on HANS."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import numpy as np
import torch
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from utils_hans import HansDataset, InputFeatures, hans_processors
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(
metadata={"help": "The name of the task to train selected in the list: " + ", ".join(hans_processors.keys())}
)
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def hans_data_collator(features: List[InputFeatures]) -> Dict[str, torch.Tensor]:
"""
Data collator that removes the "pairID" key if present.
"""
batch = default_data_collator(features)
_ = batch.pop("pairID", None)
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
processor = hans_processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
)
if training_args.do_train
else None
)
eval_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
evaluate=True,
)
if training_args.do_eval
else None
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=hans_data_collator,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
output = trainer.predict(eval_dataset)
preds = output.predictions
preds = np.argmax(preds, axis=1)
pair_ids = [ex.pairID for ex in eval_dataset]
output_eval_file = os.path.join(training_args.output_dir, "hans_predictions.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
for pid, pred in zip(pair_ids, preds):
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
trainer._log(output.metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
This diff is collapsed.
......@@ -22,15 +22,7 @@ from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
from transformers import DataProcessor, PreTrainedTokenizer, is_tf_available, is_torch_available
logger = logging.getLogger(__name__)
......@@ -106,7 +98,6 @@ if is_torch_available():
evaluate: bool = False,
):
processor = hans_processors[task]()
output_mode = hans_output_modes[task]
cached_features_file = os.path.join(
data_dir,
......@@ -127,22 +118,12 @@ if is_torch_available():
logger.info(f"Creating features from dataset file at {data_dir}")
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = (
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
)
logger.info("Training examples: %s", len(examples))
# TODO clean up all this to leverage built-in features of tokenizers
self.features = hans_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_mode
)
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(self.features, cached_features_file)
......@@ -174,21 +155,10 @@ if is_tf_available():
evaluate: bool = False,
):
processor = hans_processors[task]()
output_mode = hans_output_modes[task]
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
self.features = hans_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_mode
)
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
def gen():
for (ex_index, ex) in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
......@@ -240,15 +210,6 @@ if is_tf_available():
class HansProcessor(DataProcessor):
"""Processor for the HANS data set."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["premise"].numpy().decode("utf-8"),
tensor_dict["hypothesis"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train")
......@@ -277,11 +238,7 @@ class HansProcessor(DataProcessor):
def hans_convert_examples_to_features(
examples: List[InputExample],
label_list: List[str],
max_length: int,
tokenizer: PreTrainedTokenizer,
output_mode: str,
examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer,
):
"""
Loads a data file into a list of ``InputFeatures``
......@@ -313,19 +270,8 @@ def hans_convert_examples_to_features(
pad_to_max_length=True,
return_overflowing_tokens=True,
)
if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0:
logger.info(
"Attention! you are cropping tokens (swag task is ok). "
"If you are training ARC and RACE and you are poping question + options,"
"you need to try to use a bigger max seq length!"
)
if output_mode == "classification":
label = label_map[example.label] if example.label in label_map else 0
elif output_mode == "regression":
label = float(example.label)
else:
raise KeyError(output_mode)
pairID = int(example.pairID)
......@@ -346,7 +292,3 @@ hans_tasks_num_labels = {
hans_processors = {
"hans": HansProcessor,
}
hans_output_modes = {
"hans": "classification",
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment