Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d5477baf
Unverified
Commit
d5477baf
authored
Jun 16, 2020
by
Sylvain Gugger
Committed by
GitHub
Jun 16, 2020
Browse files
Convert hans to Trainer (#5025)
* Convert hans to Trainer * Tick box
parent
c852036b
Changes
4
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
237 additions
and
641 deletions
+237
-641
examples/README.md
examples/README.md
+1
-1
examples/adversarial/run_hans.py
examples/adversarial/run_hans.py
+231
-0
examples/adversarial/test_hans.py
examples/adversarial/test_hans.py
+0
-577
examples/adversarial/utils_hans.py
examples/adversarial/utils_hans.py
+5
-63
No files found.
examples/README.md
View file @
d5477baf
...
...
@@ -27,7 +27,7 @@ This is still a work-in-progress – in particular documentation is still sparse
|
[
**`summarization`**
](
https://github.com/huggingface/transformers/tree/master/examples/summarization
)
| CNN/Daily Mail | - | - | - | -
|
[
**`translation`**
](
https://github.com/huggingface/transformers/tree/master/examples/translation
)
| WMT | - | - | - | -
|
[
**`bertology`**
](
https://github.com/huggingface/transformers/tree/master/examples/bertology
)
| - | - | - | - | -
|
[
**`adversarial`**
](
https://github.com/huggingface/transformers/tree/master/examples/adversarial
)
| HANS |
-
| - | - | -
|
[
**`adversarial`**
](
https://github.com/huggingface/transformers/tree/master/examples/adversarial
)
| HANS |
✅
| - | - | -
<br>
...
...
examples/adversarial/run_hans.py
0 → 100644
View file @
d5477baf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on HANS."""
import
logging
import
os
from
dataclasses
import
dataclass
,
field
from
typing
import
Dict
,
List
,
Optional
import
numpy
as
np
import
torch
from
transformers
import
(
AutoConfig
,
AutoModelForSequenceClassification
,
AutoTokenizer
,
HfArgumentParser
,
Trainer
,
TrainingArguments
,
default_data_collator
,
set_seed
,
)
from
utils_hans
import
HansDataset
,
InputFeatures
,
hans_processors
logger
=
logging
.
getLogger
(
__name__
)
@
dataclass
class
ModelArguments
:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path
:
str
=
field
(
metadata
=
{
"help"
:
"Path to pretrained model or model identifier from huggingface.co/models"
}
)
config_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained config name or path if not the same as model_name"
}
)
tokenizer_name
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Pretrained tokenizer name or path if not the same as model_name"
}
)
cache_dir
:
Optional
[
str
]
=
field
(
default
=
None
,
metadata
=
{
"help"
:
"Where do you want to store the pretrained models downloaded from s3"
}
)
@
dataclass
class
DataTrainingArguments
:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name
:
str
=
field
(
metadata
=
{
"help"
:
"The name of the task to train selected in the list: "
+
", "
.
join
(
hans_processors
.
keys
())}
)
data_dir
:
str
=
field
(
metadata
=
{
"help"
:
"The input data dir. Should contain the .tsv files (or other data files) for the task."
}
)
max_seq_length
:
int
=
field
(
default
=
128
,
metadata
=
{
"help"
:
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache
:
bool
=
field
(
default
=
False
,
metadata
=
{
"help"
:
"Overwrite the cached training and evaluation sets"
}
)
def
hans_data_collator
(
features
:
List
[
InputFeatures
])
->
Dict
[
str
,
torch
.
Tensor
]:
"""
Data collator that removes the "pairID" key if present.
"""
batch
=
default_data_collator
(
features
)
_
=
batch
.
pop
(
"pairID"
,
None
)
return
batch
def
main
():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser
=
HfArgumentParser
((
ModelArguments
,
DataTrainingArguments
,
TrainingArguments
))
model_args
,
data_args
,
training_args
=
parser
.
parse_args_into_dataclasses
()
if
(
os
.
path
.
exists
(
training_args
.
output_dir
)
and
os
.
listdir
(
training_args
.
output_dir
)
and
training_args
.
do_train
and
not
training_args
.
overwrite_output_dir
):
raise
ValueError
(
f
"Output directory (
{
training_args
.
output_dir
}
) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(name)s - %(message)s"
,
datefmt
=
"%m/%d/%Y %H:%M:%S"
,
level
=
logging
.
INFO
if
training_args
.
local_rank
in
[
-
1
,
0
]
else
logging
.
WARN
,
)
logger
.
warning
(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s"
,
training_args
.
local_rank
,
training_args
.
device
,
training_args
.
n_gpu
,
bool
(
training_args
.
local_rank
!=
-
1
),
training_args
.
fp16
,
)
logger
.
info
(
"Training/evaluation parameters %s"
,
training_args
)
# Set seed
set_seed
(
training_args
.
seed
)
try
:
processor
=
hans_processors
[
data_args
.
task_name
]()
label_list
=
processor
.
get_labels
()
num_labels
=
len
(
label_list
)
except
KeyError
:
raise
ValueError
(
"Task not found: %s"
%
(
data_args
.
task_name
))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config
=
AutoConfig
.
from_pretrained
(
model_args
.
config_name
if
model_args
.
config_name
else
model_args
.
model_name_or_path
,
num_labels
=
num_labels
,
finetuning_task
=
data_args
.
task_name
,
cache_dir
=
model_args
.
cache_dir
,
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_args
.
tokenizer_name
if
model_args
.
tokenizer_name
else
model_args
.
model_name_or_path
,
cache_dir
=
model_args
.
cache_dir
,
)
model
=
AutoModelForSequenceClassification
.
from_pretrained
(
model_args
.
model_name_or_path
,
from_tf
=
bool
(
".ckpt"
in
model_args
.
model_name_or_path
),
config
=
config
,
cache_dir
=
model_args
.
cache_dir
,
)
# Get datasets
train_dataset
=
(
HansDataset
(
data_dir
=
data_args
.
data_dir
,
tokenizer
=
tokenizer
,
task
=
data_args
.
task_name
,
max_seq_length
=
data_args
.
max_seq_length
,
overwrite_cache
=
data_args
.
overwrite_cache
,
)
if
training_args
.
do_train
else
None
)
eval_dataset
=
(
HansDataset
(
data_dir
=
data_args
.
data_dir
,
tokenizer
=
tokenizer
,
task
=
data_args
.
task_name
,
max_seq_length
=
data_args
.
max_seq_length
,
overwrite_cache
=
data_args
.
overwrite_cache
,
evaluate
=
True
,
)
if
training_args
.
do_eval
else
None
)
# Initialize our Trainer
trainer
=
Trainer
(
model
=
model
,
args
=
training_args
,
train_dataset
=
train_dataset
,
eval_dataset
=
eval_dataset
,
data_collator
=
hans_data_collator
,
)
# Training
if
training_args
.
do_train
:
trainer
.
train
(
model_path
=
model_args
.
model_name_or_path
if
os
.
path
.
isdir
(
model_args
.
model_name_or_path
)
else
None
)
trainer
.
save_model
()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if
trainer
.
is_world_master
():
tokenizer
.
save_pretrained
(
training_args
.
output_dir
)
# Evaluation
if
training_args
.
do_eval
:
logger
.
info
(
"*** Evaluate ***"
)
output
=
trainer
.
predict
(
eval_dataset
)
preds
=
output
.
predictions
preds
=
np
.
argmax
(
preds
,
axis
=
1
)
pair_ids
=
[
ex
.
pairID
for
ex
in
eval_dataset
]
output_eval_file
=
os
.
path
.
join
(
training_args
.
output_dir
,
"hans_predictions.txt"
)
if
trainer
.
is_world_master
():
with
open
(
output_eval_file
,
"w"
)
as
writer
:
for
pid
,
pred
in
zip
(
pair_ids
,
preds
):
writer
.
write
(
"ex"
+
str
(
pid
)
+
","
+
label_list
[
int
(
pred
)]
+
"
\n
"
)
trainer
.
_log
(
output
.
metrics
)
def
_mp_fn
(
index
):
# For xla_spawn (TPUs)
main
()
if
__name__
==
"__main__"
:
main
()
examples/adversarial/test_hans.py
deleted
100644 → 0
View file @
c852036b
This diff is collapsed.
Click to expand it.
examples/adversarial/utils_hans.py
View file @
d5477baf
...
...
@@ -22,15 +22,7 @@ from typing import List, Optional, Union
import
tqdm
from
filelock
import
FileLock
from
transformers
import
(
DataProcessor
,
PreTrainedTokenizer
,
RobertaTokenizer
,
RobertaTokenizerFast
,
XLMRobertaTokenizer
,
is_tf_available
,
is_torch_available
,
)
from
transformers
import
DataProcessor
,
PreTrainedTokenizer
,
is_tf_available
,
is_torch_available
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -106,7 +98,6 @@ if is_torch_available():
evaluate
:
bool
=
False
,
):
processor
=
hans_processors
[
task
]()
output_mode
=
hans_output_modes
[
task
]
cached_features_file
=
os
.
path
.
join
(
data_dir
,
...
...
@@ -127,22 +118,12 @@ if is_torch_available():
logger
.
info
(
f
"Creating features from dataset file at
{
data_dir
}
"
)
label_list
=
processor
.
get_labels
()
if
task
in
[
"mnli"
,
"mnli-mm"
]
and
tokenizer
.
__class__
in
(
RobertaTokenizer
,
RobertaTokenizerFast
,
XLMRobertaTokenizer
,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list
[
1
],
label_list
[
2
]
=
label_list
[
2
],
label_list
[
1
]
examples
=
(
processor
.
get_dev_examples
(
data_dir
)
if
evaluate
else
processor
.
get_train_examples
(
data_dir
)
)
logger
.
info
(
"Training examples: %s"
,
len
(
examples
))
# TODO clean up all this to leverage built-in features of tokenizers
self
.
features
=
hans_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
,
output_mode
)
self
.
features
=
hans_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
)
logger
.
info
(
"Saving features into cached file %s"
,
cached_features_file
)
torch
.
save
(
self
.
features
,
cached_features_file
)
...
...
@@ -174,21 +155,10 @@ if is_tf_available():
evaluate
:
bool
=
False
,
):
processor
=
hans_processors
[
task
]()
output_mode
=
hans_output_modes
[
task
]
label_list
=
processor
.
get_labels
()
if
task
in
[
"mnli"
,
"mnli-mm"
]
and
tokenizer
.
__class__
in
(
RobertaTokenizer
,
RobertaTokenizerFast
,
XLMRobertaTokenizer
,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list
[
1
],
label_list
[
2
]
=
label_list
[
2
],
label_list
[
1
]
examples
=
processor
.
get_dev_examples
(
data_dir
)
if
evaluate
else
processor
.
get_train_examples
(
data_dir
)
self
.
features
=
hans_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
,
output_mode
)
self
.
features
=
hans_convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
)
def
gen
():
for
(
ex_index
,
ex
)
in
tqdm
.
tqdm
(
enumerate
(
self
.
features
),
desc
=
"convert examples to features"
):
...
...
@@ -240,15 +210,6 @@ if is_tf_available():
class
HansProcessor
(
DataProcessor
):
"""Processor for the HANS data set."""
def
get_example_from_tensor_dict
(
self
,
tensor_dict
):
"""See base class."""
return
InputExample
(
tensor_dict
[
"idx"
].
numpy
(),
tensor_dict
[
"premise"
].
numpy
().
decode
(
"utf-8"
),
tensor_dict
[
"hypothesis"
].
numpy
().
decode
(
"utf-8"
),
str
(
tensor_dict
[
"label"
].
numpy
()),
)
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
return
self
.
_create_examples
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"heuristics_train_set.txt"
)),
"train"
)
...
...
@@ -277,11 +238,7 @@ class HansProcessor(DataProcessor):
def
hans_convert_examples_to_features
(
examples
:
List
[
InputExample
],
label_list
:
List
[
str
],
max_length
:
int
,
tokenizer
:
PreTrainedTokenizer
,
output_mode
:
str
,
examples
:
List
[
InputExample
],
label_list
:
List
[
str
],
max_length
:
int
,
tokenizer
:
PreTrainedTokenizer
,
):
"""
Loads a data file into a list of ``InputFeatures``
...
...
@@ -313,19 +270,8 @@ def hans_convert_examples_to_features(
pad_to_max_length
=
True
,
return_overflowing_tokens
=
True
,
)
if
"num_truncated_tokens"
in
inputs
and
inputs
[
"num_truncated_tokens"
]
>
0
:
logger
.
info
(
"Attention! you are cropping tokens (swag task is ok). "
"If you are training ARC and RACE and you are poping question + options,"
"you need to try to use a bigger max seq length!"
)
if
output_mode
==
"classification"
:
label
=
label_map
[
example
.
label
]
if
example
.
label
in
label_map
else
0
elif
output_mode
==
"regression"
:
label
=
float
(
example
.
label
)
else
:
raise
KeyError
(
output_mode
)
pairID
=
int
(
example
.
pairID
)
...
...
@@ -346,7 +292,3 @@ hans_tasks_num_labels = {
hans_processors
=
{
"hans"
:
HansProcessor
,
}
hans_output_modes
=
{
"hans"
:
"classification"
,
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment