Unverified Commit d53b8ad7 authored by Yih-Dar's avatar Yih-Dar Committed by GitHub
Browse files

Update `use_auth_token` -> `token` in example scripts (#25167)



* pytorch examples

* tensorflow examples

* flax examples

---------
Co-authored-by: default avatarydshieh <ydshieh@users.noreply.github.com>
parent 3cbc560d
......@@ -322,14 +322,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
......@@ -337,7 +337,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# Tokenizer check: this script requires a fast tokenizer.
......
......@@ -320,13 +320,13 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = XLNetTokenizerFast.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = XLNetForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
......@@ -334,7 +334,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# Preprocessing the datasets.
......
......@@ -367,14 +367,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
......@@ -382,7 +382,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
......
......@@ -379,7 +379,7 @@ def main():
id2label=id2label,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSemanticSegmentation.from_pretrained(
model_args.model_name_or_path,
......@@ -387,13 +387,13 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# Define torchvision transforms to be applied to each image + target.
......
......@@ -370,7 +370,7 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens})
......@@ -383,21 +383,21 @@ def main():
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
if model.config.decoder_start_token_id is None:
......
......@@ -417,14 +417,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
......@@ -432,7 +432,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
......
......@@ -361,14 +361,14 @@ def main():
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
......@@ -376,7 +376,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
......
......@@ -278,7 +278,7 @@ def main():
finetuning_task="xnli",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
......@@ -286,7 +286,7 @@ def main():
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
......@@ -294,7 +294,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
......
......@@ -348,7 +348,7 @@ def main():
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
......@@ -358,7 +358,7 @@ def main():
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
add_prefix_space=True,
)
else:
......@@ -367,7 +367,7 @@ def main():
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForTokenClassification.from_pretrained(
......@@ -376,7 +376,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
......
......@@ -366,14 +366,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
......@@ -381,7 +381,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
......
......@@ -362,14 +362,14 @@ def main():
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
with training_args.strategy.scope():
model = TFAutoModel.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
else:
# Load image_processor, in this script we only use this to get the mean and std for normalization.
......@@ -377,14 +377,14 @@ def main():
model_args.image_processor_name or model_args.vision_model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
with training_args.strategy.scope():
model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
vision_model_name_or_path=model_args.vision_model_name_or_path,
text_model_name_or_path=model_args.text_model_name_or_path,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
config = model.config
......
......@@ -309,13 +309,13 @@ def main():
finetuning_task="image-classification",
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# If we don't have a validation split, split off a percentage of train as validation.
......@@ -435,7 +435,7 @@ def main():
from_pt=bool(".bin" in model_path),
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
num_replicas = training_args.strategy.num_replicas_in_sync
......
......@@ -335,14 +335,14 @@ def main():
config_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......@@ -428,7 +428,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
num_replicas = training_args.strategy.num_replicas_in_sync
......
......@@ -338,14 +338,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......@@ -625,7 +625,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
if training_args.do_train:
training_dataset = model.prepare_tf_dataset(
......
......@@ -388,14 +388,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
......@@ -513,7 +513,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
......
......@@ -284,14 +284,14 @@ def main():
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......@@ -374,7 +374,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......
......@@ -301,20 +301,20 @@ def main():
num_labels=num_labels,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
else:
config = AutoConfig.from_pretrained(
config_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......@@ -402,7 +402,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# endregion
......
......@@ -352,14 +352,14 @@ def main():
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
......@@ -466,7 +466,7 @@ def main():
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
token=True if model_args.use_auth_token else None,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment