- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
**mc_token_ids**: (`optional`, default to index of the last token of the input) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, num_choices)``:
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**lm_prediction_scores**: `tf.Tensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**mc_prediction_scores**: `tf.Tensor`` of shape ``(batch_size, num_choices)``
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
**past**:
list of `tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of `tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of `tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import GPT2Tokenizer, TFGPT2DoubleHeadsModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2DoubleHeadsModel.from_pretrained('gpt2')
# Add a [CLS] to the vocabulary (we should train it also!)
# This option is currently not implemented in TF 2.0
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
**mc_token_ids**: (`optional`, default to index of the last token of the input) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, num_choices)``:
Index of the classification token in each input sequence.
Selected in the range ``[0, input_ids.size(-1) - 1[``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import OpenAIGPTTokenizer, TFOpenAIGPTDoubleHeadsModel
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
:class:`~transformers.TFPreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
- ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:
- ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`,
- ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`,
- ``path``: a path (string) to the TensorFlow checkpoint.
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
""" Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size.
Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens: (`optional`) int:
New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end.
If not provided or None: does nothing and just returns a pointer to the input tokens ``tf.Variable`` Module of the model.
Return: ``tf.Variable``
Pointer to the input tokens Embeddings Module of the model
"""
raiseNotImplementedError
defprune_heads(self,heads_to_prune):
""" Prunes heads of the base model.
Arguments:
heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`).
"""
raiseNotImplementedError
defsave_pretrained(self,save_directory):
""" Save a model and its configuration file to a directory, so that it
can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
"""
assertos.path.isdir(save_directory),"Saving path should be a directory where the model and configuration can be saved"
# Save configuration file
self.config.save_pretrained(save_directory)
# If we save using the predefined names, we can load using `from_pretrained`
r"""Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with ``model.train()``
The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model.
It is up to you to train those weights with a downstream fine-tuning task.
The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded.
Parameters:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `PyTorch state_dict save file` (e.g. `./pt_model/pytorch_model.bin`). In this case, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
from_pt: (`optional`) boolean, default False:
Load the model weights from a PyTorch state_dict save file (see docstring of pretrained_model_name_or_path argument).
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
outputs=(logits,)+transformer_outputs[1:]# Keep new_mems and attention/hidden states if they are here
returnoutputs
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
# @add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
# the hidden-states output to compute `span start logits` and `span end logits`). """,
# XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
# class TFXLNetForQuestionAnswering(TFXLNetPreTrainedModel):
# @add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
# the hidden-states output to compute `span start logits` and `span end logits`). """,
# XLNET_START_DOCSTRING, XLNET_INPUTS_DOCSTRING)
# class TFXLNetForQuestionAnswering(TFXLNetPreTrainedModel):
# r"""
# Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
# **start_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
# ``tf.Tensor`` of shape ``(batch_size, config.start_n_top)``
# Log probabilities for the top config.start_n_top start token possibilities (beam-search).
# **start_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
# ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``
# Indices for the top config.start_n_top start token possibilities (beam-search).
# **end_top_log_probs**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
# ``tf.Tensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
# Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
# **end_top_index**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
# ``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``
# Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
# **cls_logits**: (`optional`, returned if ``start_positions`` or ``end_positions`` is not provided)
# ``tf.Tensor`` of shape ``(batch_size,)``
# Log probabilities for the ``is_impossible`` label of the answers.
# **mems**:
# list of ``tf.Tensor`` (one for each layer):
# that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
# if config.mem_len > 0 else tuple of None. Can be used to speed up sequential decoding and attend to longer context.
# See details in the docstring of the `mems` input above.
# **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
# list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
# of shape ``(batch_size, sequence_length, hidden_size)``:
# Hidden-states of the model at the output of each layer plus the initial embedding outputs.
# **attentions**: (`optional`, returned when ``config.output_attentions=True``)
# list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
# Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
# start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs) # get the representation of START as weighted sum of hidden states
# cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index) # Shape (batch size,): one single `cls_logits` for each sample
:class:`~pytorch_transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
:class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models
as well as a few methods commons to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- ``config_class``: a class derived from :class:`~pytorch_transformers.PretrainedConfig` to use as configuration class for this model architecture.
- ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
- ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values.
- ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments:
- ``model``: an instance of the relevant subclass of :class:`~pytorch_transformers.PreTrainedModel`,
- ``config``: an instance of the relevant subclass of :class:`~pytorch_transformers.PretrainedConfig`,
- ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`,
- ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`,
- ``path``: a path (string) to the TensorFlow checkpoint.
- ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model.
...
...
@@ -189,7 +189,7 @@ class PreTrainedModel(nn.Module):
defsave_pretrained(self,save_directory):
""" Save a model and its configuration file to a directory, so that it
can be re-loaded using the `:func:`~pytorch_transformers.PreTrainedModel.from_pretrained`` class method.
can be re-loaded using the `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
"""
assertos.path.isdir(save_directory),"Saving path should be a directory where the model and configuration can be saved"
...
...
@@ -201,8 +201,8 @@ class PreTrainedModel(nn.Module):
# If we save using the predefined names, we can load using `from_pretrained`
@@ -220,23 +220,24 @@ class PreTrainedModel(nn.Module):
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
- None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
...
...
@@ -256,7 +257,7 @@ class PreTrainedModel(nn.Module):
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
...
...
@@ -289,103 +290,125 @@ class PreTrainedModel(nn.Module):
@@ -723,6 +718,101 @@ class XLMForSequenceClassification(XLMPreTrainedModel):
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
outputs=outputs+transformer_outputs[1:]# Keep new_mems and attention/hidden states if they are here
returnoutputs
@add_start_docstrings("""XLM Model with a beam-search span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
XLM_START_DOCSTRING,XLM_INPUTS_DOCSTRING)
classXLMForQuestionAnswering(XLMPreTrainedModel):
r"""
**start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
@add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,
@add_start_docstrings("""XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
the hidden-states output to compute `span start logits` and `span end logits`). """,