Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d2ed8134
"vscode:/vscode.git/clone" did not exist on "9b6610f7f6312bd7f8a88fbe55ff8a03550b721b"
Unverified
Commit
d2ed8134
authored
Oct 19, 2022
by
IMvision12
Committed by
GitHub
Oct 19, 2022
Browse files
Update modeling_markuplm.py (#19723)
parent
7df0751c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
40 additions
and
40 deletions
+40
-40
src/transformers/models/markuplm/modeling_markuplm.py
src/transformers/models/markuplm/modeling_markuplm.py
+40
-40
No files found.
src/transformers/models/markuplm/modeling_markuplm.py
View file @
d2ed8134
...
...
@@ -975,20 +975,20 @@ class MarkupLMForQuestionAnswering(MarkupLMPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
QuestionAnsweringModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
xpath_tags_seq
=
None
,
xpath_subs_seq
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
start_positions
=
None
,
end_positions
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
):
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_tags_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_subs_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
start_positions
:
Optional
[
torch
.
Tensor
]
=
None
,
end_positions
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
[
torch
.
Tensor
],
QuestionAnsweringModelOutput
]
:
r
"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
...
...
@@ -1099,19 +1099,19 @@ class MarkupLMForTokenClassification(MarkupLMPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
MaskedLMOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
xpath_tags_seq
=
None
,
xpath_subs_seq
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
labels
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
):
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_tags_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_subs_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
[
torch
.
Tensor
],
MaskedLMOutput
]
:
r
"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
...
...
@@ -1206,19 +1206,19 @@ class MarkupLMForSequenceClassification(MarkupLMPreTrainedModel):
@
replace_return_docstrings
(
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
xpath_tags_seq
=
None
,
xpath_subs_seq
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
inputs_embeds
=
None
,
labels
=
None
,
output_attentions
=
None
,
output_hidden_states
=
None
,
return_dict
=
None
,
):
input_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_tags_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
xpath_subs_seq
:
Optional
[
torch
.
Tensor
]
=
None
,
attention_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
token_type_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
position_ids
:
Optional
[
torch
.
Tensor
]
=
None
,
head_mask
:
Optional
[
torch
.
Tensor
]
=
None
,
inputs_embeds
:
Optional
[
torch
.
Tensor
]
=
None
,
labels
:
Optional
[
torch
.
Tensor
]
=
None
,
output_attentions
:
Optional
[
bool
]
=
None
,
output_hidden_states
:
Optional
[
bool
]
=
None
,
return_dict
:
Optional
[
bool
]
=
None
,
)
->
Union
[
Tuple
[
torch
.
Tensor
],
SequenceClassifierOutput
]
:
r
"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment