"vscode:/vscode.git/clone" did not exist on "7b42f05c019716e75888253fc33c9ff2fee8a34a"
Unverified Commit d26b37e7 authored by Suraj Patil's avatar Suraj Patil Committed by GitHub
Browse files

Speech2TextTransformer (#10175)



* s2t

* fix config

* conversion script

* fix import

* add tokenizer

* fix tok init

* fix tokenizer

* first version working

* fix embeds

* fix lm head

* remove extra heads

* fix convert script

* handle encoder attn mask

* style

* better enc attn mask

* override _prepare_attention_mask_for_generation

* handle attn_maks in encoder and decoder

* input_ids => input_features

* enable use_cache

* remove old code

* expand embeddings if needed

* remove logits bias

* masked_lm_loss => loss

* hack tokenizer to support feature processing

* fix model_input_names

* style

* fix error message

* doc

* remove inputs_embeds

* remove input_embeds

* remove unnecessary docstring

* quality

* SpeechToText => Speech2Text

* style

* remove shared_embeds

* subsample => conv

* remove Speech2TextTransformerDecoderWrapper

* update output_lengths formula

* fix table

* remove max_position_embeddings

* update conversion scripts

* add possibility to do upper case for now

* add FeatureExtractor and Processor

* add tests for extractor

* require_torch_audio => require_torchaudio

* add processor test

* update import

* remove classification head

* attention mask is now 1D

* update docstrings

* attention mask should be of type long

* handle attention mask from generate

* alwyas return attention_mask

* fix test

* style

* doc

* Speech2TextTransformer => Speech2Text

* Speech2TextTransformerConfig => Speech2TextConfig

* remove dummy_inputs

* nit

* style

* multilinguial tok

* fix tokenizer

* add tgt_lang setter

* save lang_codes

* fix tokenizer

* add forced_bos_token_id to tokenizer

* apply review suggestions

* add torchaudio to extra deps

* add speech deps to CI

* fix dep

* add libsndfile to ci

* libsndfile1

* add speech to extras all

* libsndfile1 -> libsndfile1

* libsndfile

* libsndfile1-dev

* apt update

* add sudo to install

* update deps table

* install libsndfile1-dev on CI

* tuple to list

* init conv layer

* add model tests

* quality

* add integration tests

* skip_special_tokens

* add speech_to_text_transformer in toctree

* fix tokenizer

* fix fp16 tests

* add tokenizer tests

* fix copyright

* input_values => input_features

* doc

* add model in readme

* doc

* change checkpoint names

* fix copyright

* fix code example

* add max_model_input_sizes in tokenizer

* fix integration tests

* add do_lower_case to tokenizer

* remove clamp trick

* fix "Add modeling imports here"

* fix copyrights

* fix tests

* SpeechToTextTransformer => SpeechToText

* fix naming

* fix table formatting

* fix typo

* style

* fix typos

* remove speech dep from extras[testing]

* fix copies

* rename doc file,

* put imports under is_torch_available

* run feat extract tests when torch is available

* dummy objects for processor and extractor

* fix imports in tests

* fix import in modeling test

* fxi imports

* fix torch import

* fix imports again

* fix positional embeddings

* fix typo in import

* adapt new extractor refactor

* style

* fix torchscript test

* doc

* doc

* Apply suggestions from code review
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>

* fix docs, copied from, style

* fix docstring

* handle imports

* remove speech from all extra deps

* remove s2t from seq2seq lm mapping

* better names

* skip training tests

* add install instructions

* List => Tuple

* doc

* fix conversion script

* fix urls

* add instruction for libsndfile

* fix fp16 test
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent efb5c0a4
......@@ -38,6 +38,7 @@ from .file_utils import (
is_tokenizers_available,
is_torch_available,
is_torch_tpu_available,
is_torchaudio_available,
)
from .integrations import is_optuna_available, is_ray_available
......@@ -195,6 +196,19 @@ def require_torch_scatter(test_case):
return test_case
def require_torchaudio(test_case):
"""
Decorator marking a test that requires torchaudio.
These tests are skipped when torchaudio isn't installed.
"""
if not is_torchaudio_available:
return unittest.skip("test requires torchaudio")(test_case)
else:
return test_case
def require_tf(test_case):
"""
Decorator marking a test that requires TensorFlow.
......
......@@ -2160,6 +2160,27 @@ class RobertaModel:
requires_pytorch(self)
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class Speech2TextForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class Speech2TextModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -92,6 +92,20 @@ class ReformerTokenizer:
requires_sentencepiece(self)
class Speech2TextProcessor:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
class Speech2TextTokenizer:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_sentencepiece(self)
class T5Tokenizer:
def __init__(self, *args, **kwargs):
requires_sentencepiece(self)
......
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import Speech2TextFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from .test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=24,
num_mel_bins=24,
padding_value=0.0,
sampling_rate=16_000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.num_mel_bins = num_mel_bins
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = Speech2TextFeatureExtractor
def setUp(self):
self.feat_extract_tester = Speech2TextFeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_cepstral_mean_and_variance_normalization(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
inputs = feature_extractor(speech_inputs, padding=True, return_tensors="np", return_attention_mask=True)
input_features = inputs.input_features
attention_mask = inputs.attention_mask
fbank_feat_lengths = np.sum(attention_mask == 1, axis=1)
def _check_zero_mean_unit_variance(input_vector):
self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3))
self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3))
_check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]])
_check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]])
_check_zero_mean_unit_variance(input_features[2, : fbank_feat_lengths[2]])
......@@ -53,12 +53,13 @@ if is_torch_available():
class GenerationTesterMixin:
model_tester = None
all_generative_model_classes = ()
input_name = "input_ids"
def _get_input_ids_and_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict["input_ids"]
attention_mask = torch.ones_like(input_ids)
input_ids = inputs_dict[self.input_name]
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
# cut to half length & take max batch_size 3
max_batch_size = 2
......
This diff is collapsed.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor, Speech2TextTokenizer
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio
from .test_feature_extraction_speech_to_text import floats_list
SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
@require_torch
@require_torchaudio
@require_sentencepiece
class Speech2TextProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
feature_extractor_map = {
"feature_size": 24,
"num_mel_bins": 24,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME)
def get_tokenizer(self, **kwargs):
return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = Speech2TextProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = Speech2TextProcessor(
tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor()
)
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = Speech2TextProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
with processor.as_target_processor():
encoded_processor = processor(input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
......@@ -222,7 +222,7 @@ class SequenceFeatureExtractionTestMixin(FeatureExtractionSavingTestMixin):
input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
input_pt = feat_extract.pad(processed_features, padding="longest", return_tensors="pt")[input_name]
self.assertTrue(abs(input_np.sum() - input_pt.numpy().sum()) < 1e-2)
self.assertTrue(abs(input_np.astype(np.float32).sum() - input_pt.numpy().sum()) < 1e-2)
@require_tf
def test_padding_accepts_tensors_tf(self):
......@@ -235,7 +235,7 @@ class SequenceFeatureExtractionTestMixin(FeatureExtractionSavingTestMixin):
input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
input_tf = feat_extract.pad(processed_features, padding="longest", return_tensors="tf")[input_name]
self.assertTrue(abs(input_np.sum() - input_tf.numpy().sum()) < 1e-2)
self.assertTrue(abs(input_np.astype(np.float32).sum() - input_tf.numpy().sum()) < 1e-2)
def test_attention_mask(self):
feat_dict = self.feat_extract_dict
......
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import Speech2TextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import require_sentencepiece, require_tokenizers
from .test_tokenization_common import TokenizerTesterMixin
SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
FR_CODE = 5
ES_CODE = 10
@require_sentencepiece
@require_tokenizers
class SpeechToTextTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = Speech2TextTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
spm_model = sp.SentencePieceProcessor()
spm_model.Load(SAMPLE_SP)
vocab = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_) for id_ in range(len(spm_model))]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
save_dir = Path(self.tmpdirname)
save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])
tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def test_full_tokenizer(self):
tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[289, 50, 14, 174, 386],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
# fmt: off
[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."],
# fmt: on
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
# fmt: off
[SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."],
# fmt: on
)
@require_sentencepiece
class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
checkpoint_name = "valhalla/s2t_mustc_multilinguial_medium"
french_text = "C'est trop cool"
spanish_text = "Esto es genial"
@classmethod
def setUpClass(cls):
cls.tokenizer: Speech2TextTokenizer = Speech2TextTokenizer.from_pretrained(cls.checkpoint_name)
return cls
def check_language_codes(self):
self.assertEqual(self.tokenizer.lang_code_to_id["pt"], 4)
self.assertEqual(self.tokenizer.lang_code_to_id["ru"], 6)
self.assertEqual(self.tokenizer.lang_code_to_id["it"], 9)
self.assertEqual(self.tokenizer.lang_code_to_id["de"], 11)
def test_tokenizer_decode_ignores_language_codes(self):
self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_spanish)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_tokenizer_adds_special_tokens(self):
self.tokenizer.tgt_lang = "fr"
encoded = self.tokenizer(self.french_text).input_ids
self.assertEqual(encoded[0], FR_CODE)
self.assertEqual(encoded[-1], self.tokenizer.eos_token_id)
def test_tgt_lang_setter(self):
self.tokenizer.tgt_lang = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE])
self.tokenizer.tgt_lang = "es"
self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE])
......@@ -32,6 +32,8 @@ IGNORE_NON_TESTED = [
# models to ignore for not tested
"M2M100Encoder", # Building part of bigger (tested) model.
"M2M100Decoder", # Building part of bigger (tested) model.
"Speech2TextEncoder", # Building part of bigger (tested) model.
"Speech2TextDecoder", # Building part of bigger (tested) model.
"LEDEncoder", # Building part of bigger (tested) model.
"LEDDecoder", # Building part of bigger (tested) model.
"BartDecoderWrapper", # Building part of bigger (tested) model.
......@@ -79,6 +81,8 @@ IGNORE_NON_AUTO_CONFIGURED = [
# models to ignore for model xxx mapping
"M2M100Encoder",
"M2M100Decoder",
"Speech2TextEncoder",
"Speech2TextDecoder",
"LEDEncoder",
"LEDDecoder",
"BartDecoder",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment