Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
d1b6979a
Commit
d1b6979a
authored
May 07, 2019
by
thomwolf
Browse files
GPT-2 option to avoid predicting special tokens
parent
e211785a
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
17 additions
and
13 deletions
+17
-13
pytorch_pretrained_bert/modeling_gpt2.py
pytorch_pretrained_bert/modeling_gpt2.py
+15
-11
pytorch_pretrained_bert/tokenization_gpt2.py
pytorch_pretrained_bert/tokenization_gpt2.py
+2
-2
No files found.
pytorch_pretrained_bert/modeling_gpt2.py
View file @
d1b6979a
...
@@ -115,6 +115,7 @@ class GPT2Config(object):
...
@@ -115,6 +115,7 @@ class GPT2Config(object):
n_head
=
12
,
n_head
=
12
,
layer_norm_epsilon
=
1e-5
,
layer_norm_epsilon
=
1e-5
,
initializer_range
=
0.02
,
initializer_range
=
0.02
,
predict_special_tokens
=
True
):
):
"""Constructs GPT2Config.
"""Constructs GPT2Config.
...
@@ -130,6 +131,7 @@ class GPT2Config(object):
...
@@ -130,6 +131,7 @@ class GPT2Config(object):
layer_norm_epsilon: epsilon to use in the layer norm layers
layer_norm_epsilon: epsilon to use in the layer norm layers
initializer_range: The sttdev of the truncated_normal_initializer for
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
initializing all weight matrices.
predict_special_tokens: should we predict special tokens (when the model has a LM head)
"""
"""
if
isinstance
(
vocab_size_or_config_json_file
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
if
isinstance
(
vocab_size_or_config_json_file
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
and
isinstance
(
vocab_size_or_config_json_file
,
unicode
)):
and
isinstance
(
vocab_size_or_config_json_file
,
unicode
)):
...
@@ -147,6 +149,7 @@ class GPT2Config(object):
...
@@ -147,6 +149,7 @@ class GPT2Config(object):
self
.
n_head
=
n_head
self
.
n_head
=
n_head
self
.
layer_norm_epsilon
=
layer_norm_epsilon
self
.
layer_norm_epsilon
=
layer_norm_epsilon
self
.
initializer_range
=
initializer_range
self
.
initializer_range
=
initializer_range
self
.
predict_special_tokens
=
predict_special_tokens
else
:
else
:
raise
ValueError
(
raise
ValueError
(
"First argument must be either a vocabulary size (int)"
"First argument must be either a vocabulary size (int)"
...
@@ -297,18 +300,20 @@ class GPT2LMHead(nn.Module):
...
@@ -297,18 +300,20 @@ class GPT2LMHead(nn.Module):
def
__init__
(
self
,
model_embeddings_weights
,
config
):
def
__init__
(
self
,
model_embeddings_weights
,
config
):
super
(
GPT2LMHead
,
self
).
__init__
()
super
(
GPT2LMHead
,
self
).
__init__
()
self
.
n_embd
=
config
.
n_embd
self
.
n_embd
=
config
.
n_embd
self
.
vocab_size
=
config
.
vocab_size
self
.
predict_special_tokens
=
config
.
predict_special_tokens
embed_shape
=
model_embeddings_weights
.
shape
embed_shape
=
model_embeddings_weights
.
shape
self
.
decoder
=
nn
.
Linear
(
embed_shape
[
1
],
embed_shape
[
0
],
bias
=
False
)
self
.
decoder
=
nn
.
Linear
(
embed_shape
[
1
],
embed_shape
[
0
],
bias
=
False
)
self
.
set_embeddings_weights
(
model_embeddings_weights
)
self
.
set_embeddings_weights
(
model_embeddings_weights
)
def
set_embeddings_weights
(
self
,
model_embeddings_weights
):
def
set_embeddings_weights
(
self
,
model_embeddings_weights
,
predict_special_tokens
=
True
):
embed_shape
=
model_embeddings_weights
.
shape
self
.
predict_special_tokens
=
predict_special_tokens
self
.
decoder
.
weight
=
model_embeddings_weights
# Tied weights
self
.
decoder
.
weight
=
model_embeddings_weights
# Tied weights
def
forward
(
self
,
hidden_state
):
def
forward
(
self
,
hidden_state
):
# Truncated Language modeling logits (we remove the last token)
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits
=
self
.
decoder
(
hidden_state
)
lm_logits
=
self
.
decoder
(
hidden_state
)
if
not
self
.
predict_special_tokens
:
lm_logits
=
lm_logits
[...,
:
self
.
vocab_size
]
return
lm_logits
return
lm_logits
...
@@ -353,9 +358,6 @@ class GPT2PreTrainedModel(nn.Module):
...
@@ -353,9 +358,6 @@ class GPT2PreTrainedModel(nn.Module):
)
)
self
.
config
=
config
self
.
config
=
config
def
set_num_special_tokens
(
self
,
num_special_tokens
):
pass
def
init_weights
(
self
,
module
):
def
init_weights
(
self
,
module
):
""" Initialize the weights.
""" Initialize the weights.
"""
"""
...
@@ -650,12 +652,13 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
...
@@ -650,12 +652,13 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
self
.
lm_head
=
GPT2LMHead
(
self
.
transformer
.
wte
.
weight
,
config
)
self
.
lm_head
=
GPT2LMHead
(
self
.
transformer
.
wte
.
weight
,
config
)
self
.
apply
(
self
.
init_weights
)
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
):
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
""" Update input and output embeddings with new embedding matrice
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
Make sure we are sharing the embeddings
"""
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
past
=
None
):
def
forward
(
self
,
input_ids
,
position_ids
=
None
,
token_type_ids
=
None
,
lm_labels
=
None
,
past
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
...
@@ -729,12 +732,13 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
...
@@ -729,12 +732,13 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
self
.
multiple_choice_head
=
GPT2MultipleChoiceHead
(
config
)
self
.
multiple_choice_head
=
GPT2MultipleChoiceHead
(
config
)
self
.
apply
(
self
.
init_weights
)
self
.
apply
(
self
.
init_weights
)
def
set_num_special_tokens
(
self
,
num_special_tokens
):
def
set_num_special_tokens
(
self
,
num_special_tokens
,
predict_special_tokens
=
True
):
""" Update input and output embeddings with new embedding matrice
""" Update input and output embeddings with new embedding matrice
Make sure we are sharing the embeddings
Make sure we are sharing the embeddings
"""
"""
self
.
config
.
predict_special_tokens
=
self
.
transformer
.
config
.
predict_special_tokens
=
predict_special_tokens
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
transformer
.
set_num_special_tokens
(
num_special_tokens
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
)
self
.
lm_head
.
set_embeddings_weights
(
self
.
transformer
.
wte
.
weight
,
predict_special_tokens
=
predict_special_tokens
)
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
past
=
None
):
def
forward
(
self
,
input_ids
,
mc_token_ids
,
lm_labels
=
None
,
mc_labels
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
past
=
None
):
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
hidden_states
,
presents
=
self
.
transformer
(
input_ids
,
position_ids
,
token_type_ids
,
past
)
...
...
pytorch_pretrained_bert/tokenization_gpt2.py
View file @
d1b6979a
...
@@ -263,8 +263,8 @@ class GPT2Tokenizer(object):
...
@@ -263,8 +263,8 @@ class GPT2Tokenizer(object):
def
encode
(
self
,
text
):
def
encode
(
self
,
text
):
return
self
.
convert_tokens_to_ids
(
self
.
tokenize
(
text
))
return
self
.
convert_tokens_to_ids
(
self
.
tokenize
(
text
))
def
decode
(
self
,
tokens
):
def
decode
(
self
,
tokens
,
skip_special_tokens
=
False
):
text
=
''
.
join
(
[
self
.
decoder
[
token
]
for
token
in
tokens
]
)
text
=
''
.
join
(
self
.
convert_ids_to_tokens
(
tokens
,
skip_special_tokens
=
skip_special_
tokens
)
)
text
=
bytearray
([
self
.
byte_decoder
[
c
]
for
c
in
text
]).
decode
(
'utf-8'
,
errors
=
self
.
errors
)
text
=
bytearray
([
self
.
byte_decoder
[
c
]
for
c
in
text
]).
decode
(
'utf-8'
,
errors
=
self
.
errors
)
return
text
return
text
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment