"vscode:/vscode.git/clone" did not exist on "8a3db6b30369a5bba9fadb1f1a5a36ddff9cc74c"
Commit cf44d983 authored by VictorSanh's avatar VictorSanh
Browse files

Add more examples to BERT models for torchhub

parent 2a329c61
......@@ -82,7 +82,7 @@ def bertTokenizer(*args, **kwargs):
Example:
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
......@@ -101,7 +101,7 @@ def bertModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -113,7 +113,7 @@ def bertModel(*args, **kwargs):
>>> segments_tensors = torch.tensor([segments_ids])
tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]])
# Load bertModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased', force_reload=False)
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
......@@ -129,6 +129,23 @@ def bertForNextSentencePrediction(*args, **kwargs):
BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence
classification head.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForNextSentencePrediction
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model.eval()
# Predict the next sentence classification logits
>>> with torch.no_grad():
next_sent_classif_logits = model(tokens_tensor, segments_tensors)
"""
model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
return model
......@@ -154,7 +171,7 @@ def bertForMaskedLM(*args, **kwargs):
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -166,7 +183,7 @@ def bertForMaskedLM(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForMaskedLM
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased', force_reload=False)
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased')
>>> model.eval()
# Predict all tokens
>>> with torch.no_grad():
......@@ -194,7 +211,25 @@ def bertForSequenceClassification(*args, **kwargs):
num_labels: the number (>=2) of classes for the classifier.
Example:
>>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2, force_reload=True)
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForSequenceClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the sequence classification logits
>>> with torch.no_grad():
seq_classif_logits = model(tokens_tensor, segments_tensors)
# Or get the sequence classification loss
>>> labels = torch.tensor([1])
>>> with torch.no_grad():
seq_classif_loss = model(tokens_tensor, segments_tensors, labels=labels)
"""
model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
return model
......@@ -210,7 +245,25 @@ def bertForMultipleChoice(*args, **kwargs):
num_choices: the number (>=2) of classes for the classifier.
Example:
>>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2, force_reload=True)
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
>>> segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
# Load bertForMultipleChoice
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model.eval()
# Predict the multiple choice logits
>>> with torch.no_grad():
multiple_choice_logits = model(tokens_tensor, segments_tensors)
# Or get the multiple choice loss
>>> labels = torch.tensor([1])
>>> with torch.no_grad():
multiple_choice_loss = model(tokens_tensor, segments_tensors, labels=labels)
"""
model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
return model
......@@ -222,6 +275,27 @@ def bertForQuestionAnswering(*args, **kwargs):
BertForQuestionAnswering is a fine-tuning model that includes BertModel
with a token-level classifiers on top of the full sequence of last hidden
states.
Example:
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForQuestionAnswering
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model.eval()
# Predict the start and end positions logits
>>> with torch.no_grad():
start_logits, end_logits = model(tokens_tensor, segments_tensors)
# Or get the total loss which is the sum of the CrossEntropy loss for the start and end token positions
>>> start_positions, end_positions = torch.tensor([12]), torch.tensor([14])
>>> with torch.no_grad():
multiple_choice_loss = model(tokens_tensor, segments_tensors, start_positions=start_positions, end_positions=end_positions)
"""
model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
return model
......@@ -240,7 +314,25 @@ def bertForTokenClassification(*args, **kwargs):
num_labels: the number (>=2) of classes for the classifier.
Example:
>>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2, force_reload=True)
# Load the tokenizer
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForTokenClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the token classification logits
>>> with torch.no_grad():
classif_logits = model(tokens_tensor, segments_tensors)
# Or get the token classification loss
>>> labels = torch.tensor([[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]])
>>> with torch.no_grad():
classif_loss = model(tokens_tensor, segments_tensors, labels=labels)
"""
model = BertForTokenClassification.from_pretrained(*args, **kwargs)
return model
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment