Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
cde42c43
Commit
cde42c43
authored
Sep 17, 2019
by
Marianne Stecklina
Committed by
thomwolf
Oct 15, 2019
Browse files
Implement fine-tuning BERT on CoNLL-2003 named entity recognition task
parent
80889a02
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
688 additions
and
0 deletions
+688
-0
examples/run_ner.py
examples/run_ner.py
+482
-0
examples/utils_ner.py
examples/utils_ner.py
+206
-0
No files found.
examples/run_ner.py
0 → 100644
View file @
cde42c43
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert). """
from
__future__
import
absolute_import
,
division
,
print_function
import
argparse
import
glob
import
logging
import
os
import
random
import
numpy
as
np
import
torch
from
seqeval.metrics
import
precision_score
,
recall_score
,
f1_score
from
tensorboardX
import
SummaryWriter
from
torch.nn
import
CrossEntropyLoss
from
torch.utils.data
import
DataLoader
,
RandomSampler
,
SequentialSampler
,
TensorDataset
from
torch.utils.data.distributed
import
DistributedSampler
from
tqdm
import
tqdm
,
trange
from
utils_ner
import
convert_examples_to_features
,
get_labels
,
read_examples_from_file
from
pytorch_transformers
import
AdamW
,
WarmupLinearSchedule
from
pytorch_transformers
import
WEIGHTS_NAME
,
BertConfig
,
BertForTokenClassification
,
BertTokenizer
logger
=
logging
.
getLogger
(
__name__
)
ALL_MODELS
=
sum
(
(
tuple
(
conf
.
pretrained_config_archive_map
.
keys
())
for
conf
in
(
BertConfig
,
)),
())
MODEL_CLASSES
=
{
"bert"
:
(
BertConfig
,
BertForTokenClassification
,
BertTokenizer
),
}
def
set_seed
(
args
):
random
.
seed
(
args
.
seed
)
np
.
random
.
seed
(
args
.
seed
)
torch
.
manual_seed
(
args
.
seed
)
if
args
.
n_gpu
>
0
:
torch
.
cuda
.
manual_seed_all
(
args
.
seed
)
def
train
(
args
,
train_dataset
,
model
,
tokenizer
,
pad_token_label_id
):
""" Train the model """
if
args
.
local_rank
in
[
-
1
,
0
]:
tb_writer
=
SummaryWriter
()
args
.
train_batch_size
=
args
.
per_gpu_train_batch_size
*
max
(
1
,
args
.
n_gpu
)
train_sampler
=
RandomSampler
(
train_dataset
)
if
args
.
local_rank
==
-
1
else
DistributedSampler
(
train_dataset
)
train_dataloader
=
DataLoader
(
train_dataset
,
sampler
=
train_sampler
,
batch_size
=
args
.
train_batch_size
)
if
args
.
max_steps
>
0
:
t_total
=
args
.
max_steps
args
.
num_train_epochs
=
args
.
max_steps
//
(
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
)
+
1
else
:
t_total
=
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay
=
[
"bias"
,
"LayerNorm.weight"
]
optimizer_grouped_parameters
=
[
{
"params"
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
"weight_decay"
:
args
.
weight_decay
},
{
"params"
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
any
(
nd
in
n
for
nd
in
no_decay
)],
"weight_decay"
:
0.0
}
]
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
scheduler
=
WarmupLinearSchedule
(
optimizer
,
warmup_steps
=
args
.
warmup_steps
,
t_total
=
t_total
)
if
args
.
fp16
:
try
:
from
apex
import
amp
except
ImportError
:
raise
ImportError
(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
)
model
,
optimizer
=
amp
.
initialize
(
model
,
optimizer
,
opt_level
=
args
.
fp16_opt_level
)
# multi-gpu training (should be after apex fp16 initialization)
if
args
.
n_gpu
>
1
:
model
=
torch
.
nn
.
DataParallel
(
model
)
# Distributed training (should be after apex fp16 initialization)
if
args
.
local_rank
!=
-
1
:
model
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
model
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
,
find_unused_parameters
=
True
)
# Train!
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Num Epochs = %d"
,
args
.
num_train_epochs
)
logger
.
info
(
" Instantaneous batch size per GPU = %d"
,
args
.
per_gpu_train_batch_size
)
logger
.
info
(
" Total train batch size (w. parallel, distributed & accumulation) = %d"
,
args
.
train_batch_size
*
args
.
gradient_accumulation_steps
*
(
torch
.
distributed
.
get_world_size
()
if
args
.
local_rank
!=
-
1
else
1
))
logger
.
info
(
" Gradient Accumulation steps = %d"
,
args
.
gradient_accumulation_steps
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
global_step
=
0
tr_loss
,
logging_loss
=
0.0
,
0.0
model
.
zero_grad
()
train_iterator
=
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
,
disable
=
args
.
local_rank
not
in
[
-
1
,
0
])
set_seed
(
args
)
# Added here for reproductibility (even between python 2 and 3)
for
_
in
train_iterator
:
epoch_iterator
=
tqdm
(
train_dataloader
,
desc
=
"Iteration"
,
disable
=
args
.
local_rank
not
in
[
-
1
,
0
])
for
step
,
batch
in
enumerate
(
epoch_iterator
):
model
.
train
()
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
inputs
=
{
"input_ids"
:
batch
[
0
],
"attention_mask"
:
batch
[
1
],
"token_type_ids"
:
batch
[
2
]
if
args
.
model_type
in
[
"bert"
,
"xlnet"
]
else
None
,
# XLM and RoBERTa don"t use segment_ids
"labels"
:
batch
[
3
]}
outputs
=
model
(
**
inputs
)
loss
=
outputs
[
0
]
# model outputs are always tuple in pytorch-transformers (see doc)
if
args
.
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu parallel training
if
args
.
gradient_accumulation_steps
>
1
:
loss
=
loss
/
args
.
gradient_accumulation_steps
if
args
.
fp16
:
with
amp
.
scale_loss
(
loss
,
optimizer
)
as
scaled_loss
:
scaled_loss
.
backward
()
torch
.
nn
.
utils
.
clip_grad_norm_
(
amp
.
master_params
(
optimizer
),
args
.
max_grad_norm
)
else
:
loss
.
backward
()
torch
.
nn
.
utils
.
clip_grad_norm_
(
model
.
parameters
(),
args
.
max_grad_norm
)
tr_loss
+=
loss
.
item
()
if
(
step
+
1
)
%
args
.
gradient_accumulation_steps
==
0
:
scheduler
.
step
()
# Update learning rate schedule
optimizer
.
step
()
model
.
zero_grad
()
global_step
+=
1
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
logging_steps
>
0
and
global_step
%
args
.
logging_steps
==
0
:
# Log metrics
if
args
.
local_rank
==
-
1
and
args
.
evaluate_during_training
:
# Only evaluate when single GPU otherwise metrics may not average well
results
=
evaluate
(
args
,
model
,
tokenizer
,
pad_token_label_id
)
for
key
,
value
in
results
.
items
():
tb_writer
.
add_scalar
(
"eval_{}"
.
format
(
key
),
value
,
global_step
)
tb_writer
.
add_scalar
(
"lr"
,
scheduler
.
get_lr
()[
0
],
global_step
)
tb_writer
.
add_scalar
(
"loss"
,
(
tr_loss
-
logging_loss
)
/
args
.
logging_steps
,
global_step
)
logging_loss
=
tr_loss
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
save_steps
>
0
and
global_step
%
args
.
save_steps
==
0
:
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"checkpoint-{}"
.
format
(
global_step
))
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
model_to_save
=
model
.
module
if
hasattr
(
model
,
"module"
)
else
model
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
output_dir
)
torch
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"training_args.bin"
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
epoch_iterator
.
close
()
break
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
train_iterator
.
close
()
break
if
args
.
local_rank
in
[
-
1
,
0
]:
tb_writer
.
close
()
return
global_step
,
tr_loss
/
global_step
def
evaluate
(
args
,
model
,
tokenizer
,
pad_token_label_id
,
prefix
=
""
):
eval_dataset
=
load_and_cache_examples
(
args
,
tokenizer
,
pad_token_label_id
,
evaluate
=
True
)
args
.
eval_batch_size
=
args
.
per_gpu_eval_batch_size
*
max
(
1
,
args
.
n_gpu
)
# Note that DistributedSampler samples randomly
eval_sampler
=
SequentialSampler
(
eval_dataset
)
if
args
.
local_rank
==
-
1
else
DistributedSampler
(
eval_dataset
)
eval_dataloader
=
DataLoader
(
eval_dataset
,
sampler
=
eval_sampler
,
batch_size
=
args
.
eval_batch_size
)
# Eval!
logger
.
info
(
"***** Running evaluation %s *****"
,
prefix
)
logger
.
info
(
" Num examples = %d"
,
len
(
eval_dataset
))
logger
.
info
(
" Batch size = %d"
,
args
.
eval_batch_size
)
eval_loss
=
0.0
nb_eval_steps
=
0
preds
=
None
out_label_ids
=
None
model
.
eval
()
for
batch
in
tqdm
(
eval_dataloader
,
desc
=
"Evaluating"
):
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
with
torch
.
no_grad
():
inputs
=
{
"input_ids"
:
batch
[
0
],
"attention_mask"
:
batch
[
1
],
"token_type_ids"
:
batch
[
2
]
if
args
.
model_type
in
[
"bert"
,
"xlnet"
]
else
None
,
# XLM and RoBERTa don"t use segment_ids
"labels"
:
batch
[
3
]}
outputs
=
model
(
**
inputs
)
tmp_eval_loss
,
logits
=
outputs
[:
2
]
eval_loss
+=
tmp_eval_loss
.
item
()
nb_eval_steps
+=
1
if
preds
is
None
:
preds
=
logits
.
detach
().
cpu
().
numpy
()
out_label_ids
=
inputs
[
"labels"
].
detach
().
cpu
().
numpy
()
else
:
preds
=
np
.
append
(
preds
,
logits
.
detach
().
cpu
().
numpy
(),
axis
=
0
)
out_label_ids
=
np
.
append
(
out_label_ids
,
inputs
[
"labels"
].
detach
().
cpu
().
numpy
(),
axis
=
0
)
eval_loss
=
eval_loss
/
nb_eval_steps
preds
=
np
.
argmax
(
preds
,
axis
=
2
)
label_map
=
{
i
:
label
for
i
,
label
in
enumerate
(
get_labels
())}
out_label_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
preds_list
=
[[]
for
_
in
range
(
out_label_ids
.
shape
[
0
])]
for
i
in
range
(
out_label_ids
.
shape
[
0
]):
for
j
in
range
(
out_label_ids
.
shape
[
1
]):
if
out_label_ids
[
i
,
j
]
!=
pad_token_label_id
:
out_label_list
[
i
].
append
(
label_map
[
out_label_ids
[
i
][
j
]])
preds_list
[
i
].
append
(
label_map
[
preds
[
i
][
j
]])
results
=
{
"loss"
:
eval_loss
,
"precision"
:
precision_score
(
out_label_list
,
preds_list
),
"recall"
:
recall_score
(
out_label_list
,
preds_list
),
"f1"
:
f1_score
(
out_label_list
,
preds_list
)
}
logger
.
info
(
"***** Eval results %s *****"
,
prefix
)
for
key
in
sorted
(
results
.
keys
()):
logger
.
info
(
" %s = %s"
,
key
,
str
(
results
[
key
]))
return
results
def
load_and_cache_examples
(
args
,
tokenizer
,
pad_token_label_id
,
evaluate
=
False
):
if
args
.
local_rank
not
in
[
-
1
,
0
]
and
not
evaluate
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file
=
os
.
path
.
join
(
args
.
data_dir
,
"cached_{}_{}_{}"
.
format
(
"dev"
if
evaluate
else
"train"
,
list
(
filter
(
None
,
args
.
model_name_or_path
.
split
(
"/"
))).
pop
(),
str
(
args
.
max_seq_length
)))
if
os
.
path
.
exists
(
cached_features_file
):
logger
.
info
(
"Loading features from cached file %s"
,
cached_features_file
)
features
=
torch
.
load
(
cached_features_file
)
else
:
logger
.
info
(
"Creating features from dataset file at %s"
,
args
.
data_dir
)
label_list
=
get_labels
()
examples
=
read_examples_from_file
(
args
.
data_dir
,
evaluate
=
evaluate
)
features
=
convert_examples_to_features
(
examples
,
label_list
,
args
.
max_seq_length
,
tokenizer
,
cls_token_at_end
=
bool
(
args
.
model_type
in
[
"xlnet"
]),
# xlnet has a cls token at the end
cls_token
=
tokenizer
.
cls_token
,
cls_token_segment_id
=
2
if
args
.
model_type
in
[
"xlnet"
]
else
0
,
sep_token
=
tokenizer
.
sep_token
,
sep_token_extra
=
bool
(
args
.
model_type
in
[
"roberta"
]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left
=
bool
(
args
.
model_type
in
[
"xlnet"
]),
# pad on the left for xlnet
pad_token
=
tokenizer
.
convert_tokens_to_ids
([
tokenizer
.
pad_token
])[
0
],
pad_token_segment_id
=
4
if
args
.
model_type
in
[
"xlnet"
]
else
0
,
pad_token_label_id
=
pad_token_label_id
)
if
args
.
local_rank
in
[
-
1
,
0
]:
logger
.
info
(
"Saving features into cached file %s"
,
cached_features_file
)
torch
.
save
(
features
,
cached_features_file
)
if
args
.
local_rank
==
0
and
not
evaluate
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids
=
torch
.
tensor
([
f
.
input_ids
for
f
in
features
],
dtype
=
torch
.
long
)
all_input_mask
=
torch
.
tensor
([
f
.
input_mask
for
f
in
features
],
dtype
=
torch
.
long
)
all_segment_ids
=
torch
.
tensor
([
f
.
segment_ids
for
f
in
features
],
dtype
=
torch
.
long
)
all_label_ids
=
torch
.
tensor
([
f
.
label_ids
for
f
in
features
],
dtype
=
torch
.
long
)
dataset
=
TensorDataset
(
all_input_ids
,
all_input_mask
,
all_segment_ids
,
all_label_ids
)
return
dataset
def
main
():
parser
=
argparse
.
ArgumentParser
()
## Required parameters
parser
.
add_argument
(
"--data_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The input data dir. Should contain the training files for the CoNLL-2003 NER task."
)
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()))
parser
.
add_argument
(
"--model_name_or_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Path to pre-trained model or shortcut name selected in the list: "
+
", "
.
join
(
ALL_MODELS
))
parser
.
add_argument
(
"--output_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The output directory where the model predictions and checkpoints will be written."
)
## Other parameters
parser
.
add_argument
(
"--config_name"
,
default
=
""
,
type
=
str
,
help
=
"Pretrained config name or path if not the same as model_name"
)
parser
.
add_argument
(
"--tokenizer_name"
,
default
=
""
,
type
=
str
,
help
=
"Pretrained tokenizer name or path if not the same as model_name"
)
parser
.
add_argument
(
"--cache_dir"
,
default
=
""
,
type
=
str
,
help
=
"Where do you want to store the pre-trained models downloaded from s3"
)
parser
.
add_argument
(
"--max_seq_length"
,
default
=
128
,
type
=
int
,
help
=
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
parser
.
add_argument
(
"--do_train"
,
action
=
"store_true"
,
help
=
"Whether to run training."
)
parser
.
add_argument
(
"--do_eval"
,
action
=
"store_true"
,
help
=
"Whether to run eval on the dev set."
)
parser
.
add_argument
(
"--evaluate_during_training"
,
action
=
"store_true"
,
help
=
"Whether to run evaluation during training at each logging step."
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
"store_true"
,
help
=
"Set this flag if you are using an uncased model."
)
parser
.
add_argument
(
"--per_gpu_train_batch_size"
,
default
=
8
,
type
=
int
,
help
=
"Batch size per GPU/CPU for training."
)
parser
.
add_argument
(
"--per_gpu_eval_batch_size"
,
default
=
8
,
type
=
int
,
help
=
"Batch size per GPU/CPU for evaluation."
)
parser
.
add_argument
(
"--gradient_accumulation_steps"
,
type
=
int
,
default
=
1
,
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
parser
.
add_argument
(
"--learning_rate"
,
default
=
5e-5
,
type
=
float
,
help
=
"The initial learning rate for Adam."
)
parser
.
add_argument
(
"--weight_decay"
,
default
=
0.0
,
type
=
float
,
help
=
"Weight decay if we apply some."
)
parser
.
add_argument
(
"--adam_epsilon"
,
default
=
1e-8
,
type
=
float
,
help
=
"Epsilon for Adam optimizer."
)
parser
.
add_argument
(
"--max_grad_norm"
,
default
=
1.0
,
type
=
float
,
help
=
"Max gradient norm."
)
parser
.
add_argument
(
"--num_train_epochs"
,
default
=
3.0
,
type
=
float
,
help
=
"Total number of training epochs to perform."
)
parser
.
add_argument
(
"--max_steps"
,
default
=-
1
,
type
=
int
,
help
=
"If > 0: set total number of training steps to perform. Override num_train_epochs."
)
parser
.
add_argument
(
"--warmup_steps"
,
default
=
0
,
type
=
int
,
help
=
"Linear warmup over warmup_steps."
)
parser
.
add_argument
(
"--logging_steps"
,
type
=
int
,
default
=
50
,
help
=
"Log every X updates steps."
)
parser
.
add_argument
(
"--save_steps"
,
type
=
int
,
default
=
50
,
help
=
"Save checkpoint every X updates steps."
)
parser
.
add_argument
(
"--eval_all_checkpoints"
,
action
=
"store_true"
,
help
=
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
)
parser
.
add_argument
(
"--no_cuda"
,
action
=
"store_true"
,
help
=
"Avoid using CUDA when available"
)
parser
.
add_argument
(
"--overwrite_output_dir"
,
action
=
"store_true"
,
help
=
"Overwrite the content of the output directory"
)
parser
.
add_argument
(
"--overwrite_cache"
,
action
=
"store_true"
,
help
=
"Overwrite the cached training and evaluation sets"
)
parser
.
add_argument
(
"--seed"
,
type
=
int
,
default
=
42
,
help
=
"random seed for initialization"
)
parser
.
add_argument
(
"--fp16"
,
action
=
"store_true"
,
help
=
"Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
)
parser
.
add_argument
(
"--fp16_opt_level"
,
type
=
str
,
default
=
"O1"
,
help
=
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
)
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
default
=-
1
,
help
=
"For distributed training: local_rank"
)
parser
.
add_argument
(
"--server_ip"
,
type
=
str
,
default
=
""
,
help
=
"For distant debugging."
)
parser
.
add_argument
(
"--server_port"
,
type
=
str
,
default
=
""
,
help
=
"For distant debugging."
)
args
=
parser
.
parse_args
()
if
os
.
path
.
exists
(
args
.
output_dir
)
and
os
.
listdir
(
args
.
output_dir
)
and
args
.
do_train
and
not
args
.
overwrite_output_dir
:
raise
ValueError
(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
.
format
(
args
.
output_dir
))
# Setup distant debugging if needed
if
args
.
server_ip
and
args
.
server_port
:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import
ptvsd
print
(
"Waiting for debugger attach"
)
ptvsd
.
enable_attach
(
address
=
(
args
.
server_ip
,
args
.
server_port
),
redirect_output
=
True
)
ptvsd
.
wait_for_attach
()
# Setup CUDA, GPU & distributed training
if
args
.
local_rank
==
-
1
or
args
.
no_cuda
:
device
=
torch
.
device
(
"cuda"
if
torch
.
cuda
.
is_available
()
and
not
args
.
no_cuda
else
"cpu"
)
args
.
n_gpu
=
torch
.
cuda
.
device_count
()
else
:
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch
.
cuda
.
set_device
(
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
torch
.
distributed
.
init_process_group
(
backend
=
"nccl"
)
args
.
n_gpu
=
1
args
.
device
=
device
# Setup logging
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(name)s - %(message)s"
,
datefmt
=
"%m/%d/%Y %H:%M:%S"
,
level
=
logging
.
INFO
if
args
.
local_rank
in
[
-
1
,
0
]
else
logging
.
WARN
)
logger
.
warning
(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s"
,
args
.
local_rank
,
device
,
args
.
n_gpu
,
bool
(
args
.
local_rank
!=
-
1
),
args
.
fp16
)
# Set seed
set_seed
(
args
)
# Prepare CONLL-2003 task
label_list
=
get_labels
()
num_labels
=
len
(
label_list
)
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
pad_token_label_id
=
CrossEntropyLoss
().
ignore_index
# Load pretrained model and tokenizer
if
args
.
local_rank
not
in
[
-
1
,
0
]:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
args
.
model_type
=
args
.
model_type
.
lower
()
config_class
,
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
config
=
config_class
.
from_pretrained
(
args
.
config_name
if
args
.
config_name
else
args
.
model_name_or_path
,
num_labels
=
num_labels
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
tokenizer_name
if
args
.
tokenizer_name
else
args
.
model_name_or_path
,
do_lower_case
=
args
.
do_lower_case
)
model
=
model_class
.
from_pretrained
(
args
.
model_name_or_path
,
from_tf
=
bool
(
".ckpt"
in
args
.
model_name_or_path
),
config
=
config
)
if
args
.
local_rank
==
0
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
model
.
to
(
args
.
device
)
logger
.
info
(
"Training/evaluation parameters %s"
,
args
)
# Training
if
args
.
do_train
:
train_dataset
=
load_and_cache_examples
(
args
,
tokenizer
,
pad_token_label_id
,
evaluate
=
False
)
global_step
,
tr_loss
=
train
(
args
,
train_dataset
,
model
,
tokenizer
,
pad_token_label_id
)
logger
.
info
(
" global_step = %s, average loss = %s"
,
global_step
,
tr_loss
)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if
args
.
do_train
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
):
# Create output directory if needed
if
not
os
.
path
.
exists
(
args
.
output_dir
)
and
args
.
local_rank
in
[
-
1
,
0
]:
os
.
makedirs
(
args
.
output_dir
)
logger
.
info
(
"Saving model checkpoint to %s"
,
args
.
output_dir
)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save
=
model
.
module
if
hasattr
(
model
,
"module"
)
else
model
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
# Good practice: save your training arguments together with the trained model
torch
.
save
(
args
,
os
.
path
.
join
(
args
.
output_dir
,
"training_args.bin"
))
# Evaluation
results
=
{}
if
args
.
do_eval
and
args
.
local_rank
in
[
-
1
,
0
]:
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
,
do_lower_case
=
args
.
do_lower_case
)
checkpoints
=
[
args
.
output_dir
]
if
args
.
eval_all_checkpoints
:
checkpoints
=
list
(
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
)))
logging
.
getLogger
(
"pytorch_transformers.modeling_utils"
).
setLevel
(
logging
.
WARN
)
# Reduce logging
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
for
checkpoint
in
checkpoints
:
global_step
=
checkpoint
.
split
(
"-"
)[
-
1
]
if
len
(
checkpoints
)
>
1
else
""
model
=
model_class
.
from_pretrained
(
checkpoint
)
model
.
to
(
args
.
device
)
result
=
evaluate
(
args
,
model
,
tokenizer
,
pad_token_label_id
,
prefix
=
global_step
)
if
global_step
:
result
=
{
"{}_{}"
.
format
(
global_step
,
k
):
v
for
k
,
v
in
result
.
items
()}
results
.
update
(
result
)
output_eval_file
=
os
.
path
.
join
(
args
.
output_dir
,
"eval_results.txt"
)
with
open
(
output_eval_file
,
"w"
)
as
writer
:
for
key
in
sorted
(
results
.
keys
()):
writer
.
write
(
"{} = {}
\n
"
.
format
(
key
,
str
(
results
[
key
])))
return
results
if
__name__
==
"__main__"
:
main
()
examples/utils_ner.py
0 → 100644
View file @
cde42c43
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """
from
__future__
import
absolute_import
,
division
,
print_function
import
logging
import
os
from
io
import
open
logger
=
logging
.
getLogger
(
__name__
)
class
InputExample
(
object
):
"""A single training/test example for token classification."""
def
__init__
(
self
,
guid
,
words
,
labels
):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
"""
self
.
guid
=
guid
self
.
words
=
words
self
.
labels
=
labels
class
InputFeatures
(
object
):
"""A single set of features of data."""
def
__init__
(
self
,
input_ids
,
input_mask
,
segment_ids
,
label_ids
):
self
.
input_ids
=
input_ids
self
.
input_mask
=
input_mask
self
.
segment_ids
=
segment_ids
self
.
label_ids
=
label_ids
def
read_examples_from_file
(
data_dir
,
evaluate
=
False
):
if
evaluate
:
file_path
=
os
.
path
.
join
(
data_dir
,
"dev.txt"
)
guid_prefix
=
"dev"
else
:
file_path
=
os
.
path
.
join
(
data_dir
,
"train.txt"
)
guid_prefix
=
"train"
guid_index
=
1
examples
=
[]
with
open
(
file_path
,
encoding
=
"utf-8"
)
as
f
:
words
=
[]
labels
=
[]
for
line
in
f
:
if
line
.
startswith
(
"-DOCSTART-"
)
or
line
==
""
or
line
==
"
\n
"
:
if
words
:
examples
.
append
(
InputExample
(
guid
=
"{}-{}"
.
format
(
guid_prefix
,
guid_index
),
words
=
words
,
labels
=
labels
))
guid_index
+=
1
words
=
[]
labels
=
[]
else
:
splits
=
line
.
split
(
" "
)
words
.
append
(
splits
[
0
])
labels
.
append
(
splits
[
-
1
][:
-
1
])
if
words
:
examples
.
append
(
InputExample
(
guid
=
"%s-%d"
.
format
(
guid_prefix
,
guid_index
),
words
=
words
,
labels
=
labels
))
return
examples
def
convert_examples_to_features
(
examples
,
label_list
,
max_seq_length
,
tokenizer
,
cls_token_at_end
=
False
,
cls_token
=
"[CLS]"
,
cls_token_segment_id
=
1
,
sep_token
=
"[SEP]"
,
sep_token_extra
=
False
,
pad_on_left
=
False
,
pad_token
=
0
,
pad_token_segment_id
=
0
,
pad_token_label_id
=-
1
,
sequence_a_segment_id
=
0
,
mask_padding_with_zero
=
True
):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
label_map
=
{
label
:
i
for
i
,
label
in
enumerate
(
label_list
)}
features
=
[]
for
(
ex_index
,
example
)
in
enumerate
(
examples
):
if
ex_index
%
10000
==
0
:
logger
.
info
(
"Writing example %d of %d"
,
ex_index
,
len
(
examples
))
tokens
=
[]
label_ids
=
[]
for
word
,
label
in
zip
(
example
.
words
,
example
.
labels
):
word_tokens
=
tokenizer
.
tokenize
(
word
)
tokens
.
extend
(
word_tokens
)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids
.
extend
([
label_map
[
label
]]
+
[
pad_token_label_id
]
*
(
len
(
word_tokens
)
-
1
))
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count
=
3
if
sep_token_extra
else
2
if
len
(
tokens
)
>
max_seq_length
-
special_tokens_count
:
tokens
=
tokens
[:(
max_seq_length
-
special_tokens_count
)]
label_ids
=
label_ids
[:(
max_seq_length
-
special_tokens_count
)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens
+=
[
sep_token
]
label_ids
+=
[
pad_token_label_id
]
if
sep_token_extra
:
# roberta uses an extra separator b/w pairs of sentences
tokens
+=
[
sep_token
]
label_ids
+=
[
pad_token_label_id
]
segment_ids
=
[
sequence_a_segment_id
]
*
len
(
tokens
)
if
cls_token_at_end
:
tokens
+=
[
cls_token
]
label_ids
+=
[
pad_token_label_id
]
segment_ids
+=
[
cls_token_segment_id
]
else
:
tokens
=
[
cls_token
]
+
tokens
label_ids
=
[
pad_token_label_id
]
+
label_ids
segment_ids
=
[
cls_token_segment_id
]
+
segment_ids
input_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask
=
[
1
if
mask_padding_with_zero
else
0
]
*
len
(
input_ids
)
# Zero-pad up to the sequence length.
padding_length
=
max_seq_length
-
len
(
input_ids
)
if
pad_on_left
:
input_ids
=
([
pad_token
]
*
padding_length
)
+
input_ids
input_mask
=
([
0
if
mask_padding_with_zero
else
1
]
*
padding_length
)
+
input_mask
segment_ids
=
([
pad_token_segment_id
]
*
padding_length
)
+
segment_ids
label_ids
=
([
pad_token_label_id
]
*
padding_length
)
+
label_ids
else
:
input_ids
+=
([
pad_token
]
*
padding_length
)
input_mask
+=
([
0
if
mask_padding_with_zero
else
1
]
*
padding_length
)
segment_ids
+=
([
pad_token_segment_id
]
*
padding_length
)
label_ids
+=
([
pad_token_label_id
]
*
padding_length
)
assert
len
(
input_ids
)
==
max_seq_length
assert
len
(
input_mask
)
==
max_seq_length
assert
len
(
segment_ids
)
==
max_seq_length
assert
len
(
label_ids
)
==
max_seq_length
if
ex_index
<
5
:
logger
.
info
(
"*** Example ***"
)
logger
.
info
(
"guid: %s"
,
example
.
guid
)
logger
.
info
(
"tokens: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
tokens
]))
logger
.
info
(
"input_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_ids
]))
logger
.
info
(
"input_mask: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
input_mask
]))
logger
.
info
(
"segment_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
segment_ids
]))
logger
.
info
(
"label_ids: %s"
,
" "
.
join
([
str
(
x
)
for
x
in
label_ids
]))
features
.
append
(
InputFeatures
(
input_ids
=
input_ids
,
input_mask
=
input_mask
,
segment_ids
=
segment_ids
,
label_ids
=
label_ids
))
return
features
def
get_labels
():
return
[
"O"
,
"B-MISC"
,
"I-MISC"
,
"B-PER"
,
"I-PER"
,
"B-ORG"
,
"I-ORG"
,
"B-LOC"
,
"I-LOC"
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment