Unverified Commit ccd26c28 authored by Théophile Blard's avatar Théophile Blard Committed by GitHub
Browse files

Create model card for tblard/allocine (#4775)

https://huggingface.co/tblard/tf-allocine
parent 2a4b9e09
---
language: french
---
# tf-allociné
A french sentiment analysis model, based on [CamemBERT](https://camembert-model.fr/), and finetuned on a large-scale dataset scraped from [Allociné.fr](http://www.allocine.fr/) user reviews.
## Results
| Validation Accuracy | Validation F1-Score | Test Accuracy | Test F1-Score |
|--------------------:| -------------------:| -------------:|--------------:|
| 97.39 | 97.36 | 97.44 | 97.34 |
The dataset and the evaluation code are available on [this repo](https://github.com/TheophileBlard/french-sentiment-analysis-with-bert).
## Usage
```python
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("tblard/tf-allocine")
model = TFAutoModelForSequenceClassification.from_pretrained("tblard/tf-allocine")
nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
print(nlp("Alad'2 est clairement le meilleur film de l'année 2018.")) # POSITIVE
print(nlp("Juste whoaaahouuu !")) # POSITIVE
print(nlp("NUL...A...CHIER ! FIN DE TRANSMISSION.")) # NEGATIVE
print(nlp("Je m'attendais à mieux de la part de Franck Dubosc !")) # NEGATIVE
```
## Author
Théophile Blard – :email: theophile.blard@gmail.com
If you use this work (code, model or dataset), please cite as:
> Théophile Blard, French sentiment analysis with BERT, (2020), GitHub repository, <https://github.com/TheophileBlard/french-sentiment-analysis-with-bert>
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment