Unverified Commit cbe63949 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Model Templates for Seq2Seq (#9251)

* adapt cookie cutter

* fix copy past statement

* delete copy statements for now

* remove unused import from template

* make doc rst

* correct config docstring

* correct training

* correct inputs processing tf enc dec

* make style

* adapt templates

* clean tabs

* correct tensor -> Tensor naming

* correct indent

* correct templates

* fix the test

* break lines to avoid > 119

* Apply suggestions from code review
parent e6c1f1ca
...@@ -40,6 +40,8 @@ jobs: ...@@ -40,6 +40,8 @@ jobs:
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
make style make style
python utils/check_table.py --fix_and_overwrite python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite python utils/check_dummies.py --fix_and_overwrite
......
...@@ -1077,7 +1077,7 @@ class TFBartModel(TFBartPretrainedModel): ...@@ -1077,7 +1077,7 @@ class TFBartModel(TFBartPretrainedModel):
decoder_outputs = self.decoder( decoder_outputs = self.decoder(
inputs["decoder_input_ids"], inputs["decoder_input_ids"],
attention_mask=decoder_attention_mask, attention_mask=inputs["decoder_attention_mask"],
encoder_hidden_states=inputs["encoder_outputs"][0], encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"], encoder_attention_mask=inputs["attention_mask"],
past_key_values=inputs["past_key_values"], past_key_values=inputs["past_key_values"],
...@@ -1228,6 +1228,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel): ...@@ -1228,6 +1228,7 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel):
output_attentions=inputs["output_attentions"], output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"], output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"], return_dict=inputs["return_dict"],
training=inputs["training"],
) )
lm_logits = self.model.shared(outputs[0], mode="linear") lm_logits = self.model.shared(outputs[0], mode="linear")
lm_logits = lm_logits + self.final_logits_bias lm_logits = lm_logits + self.final_logits_bias
......
...@@ -30,6 +30,7 @@ if is_tokenizers_available(): ...@@ -30,6 +30,7 @@ if is_tokenizers_available():
from .tokenization_{{cookiecutter.lowercase_modelname}}_fast import {{cookiecutter.camelcase_modelname}}TokenizerFast from .tokenization_{{cookiecutter.lowercase_modelname}}_fast import {{cookiecutter.camelcase_modelname}}TokenizerFast
{%- if (cookiecutter.generate_tensorflow_and_pytorch == "PyTorch & TensorFlow" or cookiecutter.generate_tensorflow_and_pytorch == "PyTorch") %} {%- if (cookiecutter.generate_tensorflow_and_pytorch == "PyTorch & TensorFlow" or cookiecutter.generate_tensorflow_and_pytorch == "PyTorch") %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
if is_torch_available(): if is_torch_available():
from .modeling_{{cookiecutter.lowercase_modelname}} import ( from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
...@@ -44,8 +45,20 @@ if is_torch_available(): ...@@ -44,8 +45,20 @@ if is_torch_available():
{{cookiecutter.camelcase_modelname}}PreTrainedModel, {{cookiecutter.camelcase_modelname}}PreTrainedModel,
load_tf_weights_in_{{cookiecutter.lowercase_modelname}}, load_tf_weights_in_{{cookiecutter.lowercase_modelname}},
) )
{% else %}
if is_torch_available():
from .modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %} {% endif %}
{%- if (cookiecutter.generate_tensorflow_and_pytorch == "PyTorch & TensorFlow" or cookiecutter.generate_tensorflow_and_pytorch == "TensorFlow") %} {%- if (cookiecutter.generate_tensorflow_and_pytorch == "PyTorch & TensorFlow" or cookiecutter.generate_tensorflow_and_pytorch == "TensorFlow") %}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
if is_tf_available(): if is_tf_available():
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import ( from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
...@@ -59,4 +72,12 @@ if is_tf_available(): ...@@ -59,4 +72,12 @@ if is_tf_available():
TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
) )
{% endif %} {% else %}
\ No newline at end of file if is_tf_available():
from .modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif %}
{% endif %}
...@@ -6,5 +6,6 @@ ...@@ -6,5 +6,6 @@
"authors": "{{cookiecutter.authors}}", "authors": "{{cookiecutter.authors}}",
"checkpoint_identifier": "{{cookiecutter.checkpoint_identifier}}", "checkpoint_identifier": "{{cookiecutter.checkpoint_identifier}}",
"tokenizer_type": "{{cookiecutter.tokenizer_type}}", "tokenizer_type": "{{cookiecutter.tokenizer_type}}",
"generate_tensorflow_and_pytorch": "{{cookiecutter.generate_tensorflow_and_pytorch}}" "generate_tensorflow_and_pytorch": "{{cookiecutter.generate_tensorflow_and_pytorch}}",
"is_encoder_decoder_model": ["True", "False"]
} }
...@@ -39,6 +39,7 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -39,6 +39,7 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
Args: Args:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
vocab_size (:obj:`int`, `optional`, defaults to 30522): vocab_size (:obj:`int`, `optional`, defaults to 30522):
Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or :obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or
...@@ -70,6 +71,50 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -70,6 +71,50 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12): layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers. The epsilon used by the layer normalization layers.
{% else -%}
vocab_size (:obj:`int`, `optional`, defaults to 50265):
Vocabulary size of the {{cookiecutter.modelname}} model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.{{cookiecutter.camelcase_modelname}}Model` or
:class:`~transformers.TF{{cookiecutter.camelcase_modelname}}Model`.
d_model (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of encoder layers.
decoder_layers (:obj:`int`, `optional`, defaults to 12):
Number of decoder layers.
encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the decoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models).
{% endif -%}
Example:: Example::
...@@ -88,9 +133,9 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -88,9 +133,9 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
def __init__( def __init__(
self, self,
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
vocab_size=30522, vocab_size=30522,
hidden_size=768, hidden_size=768,
is_encoder_decoder=False,
num_hidden_layers=12, num_hidden_layers=12,
num_attention_heads=12, num_attention_heads=12,
intermediate_size=3072, intermediate_size=3072,
...@@ -101,6 +146,29 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -101,6 +146,29 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
type_vocab_size=2, type_vocab_size=2,
initializer_range=0.02, initializer_range=0.02,
layer_norm_eps=1e-12, layer_norm_eps=1e-12,
is_encoder_decoder=False,
{% else -%}
vocab_size=50265,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=2,
classifier_dropout=0.0,
{% endif -%}
pad_token_id=1, pad_token_id=1,
bos_token_id=0, bos_token_id=0,
eos_token_id=2, eos_token_id=2,
...@@ -108,13 +176,19 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -108,13 +176,19 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
): ):
super().__init__( super().__init__(
pad_token_id=pad_token_id, pad_token_id=pad_token_id,
is_encoder_decoder=is_encoder_decoder,
bos_token_id=bos_token_id, bos_token_id=bos_token_id,
eos_token_id=eos_token_id, eos_token_id=eos_token_id,
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
{% else -%}
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
{% endif -%}
**kwargs **kwargs
) )
self.vocab_size = vocab_size self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads self.num_attention_heads = num_attention_heads
...@@ -122,8 +196,36 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig): ...@@ -122,8 +196,36 @@ class {{cookiecutter.camelcase_modelname}}Config(PretrainedConfig):
self.hidden_act = hidden_act self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps self.layer_norm_eps = layer_norm_eps
{% else -%}
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
{% endif -%}
{% if cookiecutter.is_encoder_decoder_model == "False" %}
{%- else %}
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
{%- endif %}
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
# limitations under the License. # limitations under the License.
""" TF 2.0 {{cookiecutter.modelname}} model. """ """ TF 2.0 {{cookiecutter.modelname}} model. """
{% if cookiecutter.is_encoder_decoder_model == "False" %}
import tensorflow as tf import tensorflow as tf
...@@ -1395,3 +1397,1170 @@ class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutte ...@@ -1395,3 +1397,1170 @@ class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutte
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
{% else %}
import random
from typing import Dict, Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPast,
TFSeq2SeqLMOutput,
TFSeq2SeqModelOutput,
)
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
input_processing,
keras_serializable,
shape_list,
)
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
_TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer"
LARGE_NEGATIVE = -1e8
def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
shifted_input_ids = tf.cast(input_ids, tf.int32)
shifted_input_ids = tf.roll(shifted_input_ids, 1, axis=-1)
start_tokens = tf.fill((shape_list(shifted_input_ids)[0], 1), decoder_start_token_id)
shifted_input_ids = tf.concat([start_tokens, shifted_input_ids[:, 1:]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, tf.int32))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = tf.ones((tgt_len, tgt_len), dtype=tf.float32) * LARGE_NEGATIVE
mask_cond = tf.range(shape_list(mask)[-1])
mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
mask = tf.cast(mask, tf.float32)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length), dtype=tf.float32), mask], axis=-1)
return tf.broadcast_to(mask[None, None, :, :], (bsz, 1, tgt_len, tgt_len + past_key_values_length))
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = shape_list(mask)
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = tf.cast(tf.broadcast_to(mask[:, None, None, :], (bsz, 1, tgt_len, src_len)), tf.float32)
return (1.0 - expanded_mask) * LARGE_NEGATIVE
class TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(TFSharedEmbeddings):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, **kwargs):
assert padding_idx is not None, "padding_idx cannot be None"
super().__init__(num_embeddings, embedding_dim, **kwargs)
def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input_shape[:2]
positions = tf.range(
past_key_values_length, seq_len + past_key_values_length, delta=1, dtype=tf.int32, name="range"
)
return super().call(positions)
class TF{{cookiecutter.camelcase_modelname}}Attention(tf.keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = tf.keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None,
attention_mask: Optional[tf.Tensor] = None,
training=False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}",
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}",
)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}",
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention(
self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, training=False):
"""
Args:
hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
"""
residual = hidden_states
hidden_states, self_attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask
)
tf.debugging.assert_equal(
shape_list(hidden_states),
shape_list(residual),
message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, self_attn_weights
class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.d_model
self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.encoder_attn = TF{{cookiecutter.camelcase_modelname}}Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
name="encoder_attn",
is_decoder=True,
)
self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
def call(
self,
hidden_states,
attention_mask: Optional[tf.Tensor] = None,
encoder_hidden_states: Optional[tf.Tensor] = None,
encoder_attention_mask: Optional[tf.Tensor] = None,
past_key_value: Optional[Tuple[tf.Tensor]] = None,
training=False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, _, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = self.activation_dropout(hidden_states, training=training)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
present_key_value,
)
class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel):
config_class = {{cookiecutter.camelcase_modelname}}Config
base_model_prefix = "model"
@property
def dummy_inputs(self):
pad_token = 1
input_ids = tf.cast(tf.constant(DUMMY_INPUTS), tf.int32)
decoder_input_ids = tf.cast(tf.constant(DUMMY_INPUTS), tf.int32)
dummy_inputs = {
"decoder_input_ids": decoder_input_ids,
"attention_mask": tf.math.not_equal(input_ids, pad_token),
"input_ids": input_ids,
}
return dummy_inputs
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the
generic methods the library implements for all its model (such as downloading or saving, resizing the input
embeddings, pruning heads etc.)
This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use
it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage
and behavior.
.. note::
TF 2.0 models accepts two formats as inputs:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional arguments.
This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all
the tensors in the first argument of the model call function: :obj:`model(inputs)`.
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in
the first positional argument :
- a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
:obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Args:
config (:class:`~transformers.{{cookiecutter.camelcase_modelname}}Config`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the
model weights.
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids right, following the paper.
decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
encoder_outputs (:obj:`tf.FloatTensor`, `optional`):
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.TFModelOutput` instead of a plain tuple.
training (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
config_class = {{cookiecutter.camelcase_modelname}}Config
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`TF{{cookiecutter.camelcase_modelname}}EncoderLayer`.
Args:
config: {{cookiecutter.camelcase_modelname}}Config
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.dropout = tf.keras.layers.Dropout(config.dropout)
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_tokens = embed_tokens
self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
name="embed_positions",
)
self.layers = [TF{{cookiecutter.camelcase_modelname}}EncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs["inputs_embeds"] is None:
inputs_embeds = self.embed_tokens(inputs["input_ids"])
else:
inputs_embeds = inputs["inputs_embeds"]
inputs_embeds = inputs_embeds
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# check attention mask and invert
if inputs["attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(inputs["attention_mask"])
else:
attention_mask = None
encoder_states = () if inputs["output_hidden_states"] else None
all_attentions = () if inputs["output_attentions"] else None
# encoder layers
for encoder_layer in self.layers:
if inputs["output_hidden_states"]:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer
continue
hidden_states, attn = encoder_layer(hidden_states, attention_mask)
if inputs["output_attentions"]:
all_attentions += (attn,)
if inputs["output_hidden_states"]:
encoder_states = encoder_states + (hidden_states,)
if not inputs["return_dict"]:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@keras_serializable
class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
config_class = {{cookiecutter.camelcase_modelname}}Config
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`TF{{cookiecutter.camelcase_modelname}}DecoderLayer`
Args:
config: {{cookiecutter.camelcase_modelname}}Config
embed_tokens: output embedding
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.embed_tokens = embed_tokens
self.layerdrop = config.decoder_layerdrop
self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
name="embed_positions",
)
self.layers = [TF{{cookiecutter.camelcase_modelname}}DecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
self.dropout = tf.keras.layers.Dropout(config.dropout)
def call(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs,
):
r"""
Args:
input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif inputs["input_ids"] is not None:
input_shape = shape_list(inputs["input_ids"])
elif inputs["inputs_embeds"] is not None:
input_shape = shape_list(inputs["inputs_embeds"])[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = (
inputs["past_key_values"][0][0].shape[2] if inputs["past_key_values"] is not None else 0
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
if inputs["inputs_embeds"] is None:
inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"])
hidden_states = inputs["inputs_embeds"]
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
else:
combined_attention_mask = _expand_mask(
tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
)
if inputs["attention_mask"] is None and inputs["input_ids"] is not None and input_shape[-1] > 1:
inputs["attention_mask"] = tf.cast(
tf.math.not_equal(inputs["input_ids"], self.config.pad_token_id), inputs["input_ids"].dtype
)
inputs["attention_mask"] = tf.concat(
[
tf.ones((input_shape[0], past_key_values_length), dtype=inputs["attention_mask"].dtype),
inputs["attention_mask"],
],
axis=-1,
)
else:
inputs["attention_mask"] = tf.ones(
(input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.int32
)
if inputs["encoder_hidden_states"] is not None and inputs["encoder_attention_mask"] is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
inputs["encoder_attention_mask"] = _expand_mask(inputs["encoder_attention_mask"], tgt_len=input_shape[-1])
hidden_states = self.layernorm_embedding(hidden_states + positions)
hidden_states = self.dropout(hidden_states, training=inputs["training"])
# decoder layers
all_hidden_states = ()
all_self_attns = ()
present_key_values = ()
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if inputs["training"] and (dropout_probability < self.layerdrop):
continue
past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=inputs["encoder_hidden_states"],
encoder_attention_mask=inputs["encoder_attention_mask"],
past_key_value=past_key_value,
)
if inputs["use_cache"]:
present_key_values += (present_key_value,)
if inputs["output_attentions"]:
all_self_attns += (layer_self_attn,)
if inputs["output_hidden_states"]:
all_hidden_states += (hidden_states,)
else:
all_hidden_states = None
all_self_attns = list(all_self_attns) if inputs["output_attentions"] else None
present_key_values = (encoder_hidden_states, present_key_values) if inputs["use_cache"] else None
if not inputs["return_dict"]:
return hidden_states, present_key_values, all_hidden_states, all_self_attns
else:
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@add_start_docstrings(
"The bare {{cookiecutter.uppercase_modelname}} Model outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
@keras_serializable
class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel):
base_model_prefix = "model"
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared")
with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name:
pass
# Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope.
embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name)
embed_tokens.vocab_size = self.shared.vocab_size
embed_tokens.hidden_size = self.shared.hidden_size
self.encoder = TF{{cookiecutter.camelcase_modelname}}Encoder(config, embed_tokens, name="encoder")
self.decoder = TF{{cookiecutter.camelcase_modelname}}Decoder(config, embed_tokens, name="decoder")
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="{{cookiecutter.checkpoint_identifier}}",
output_type=TFSeq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
**kwargs
):
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
kwargs_call=kwargs,
)
if inputs["decoder_input_ids"] is None and inputs["decoder_inputs_embeds"] is None:
inputs["use_cache"] = False
inputs["output_hidden_states"] = (
inputs["output_hidden_states"]
if inputs["output_hidden_states"] is not None
else self.config.output_hidden_states
)
if inputs["encoder_outputs"] is None:
inputs["encoder_outputs"] = self.encoder(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
inputs_embeds=inputs["inputs_embeds"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
# If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
elif inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], TFBaseModelOutput):
inputs["encoder_outputs"] = TFBaseModelOutput(
last_hidden_state=inputs["encoder_outputs"][0],
hidden_states=inputs["encoder_outputs"][1] if len(inputs["encoder_outputs"]) > 1 else None,
attentions=inputs["encoder_outputs"][2] if len(inputs["encoder_outputs"]) > 2 else None,
)
# If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
elif not inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], tuple):
inputs["encoder_outputs"] = inputs["encoder_outputs"].to_tuple()
decoder_outputs = self.decoder(
inputs["decoder_input_ids"],
attention_mask=inputs["decoder_attention_mask"],
encoder_hidden_states=inputs["encoder_outputs"][0],
encoder_attention_mask=inputs["attention_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"],
)
if not inputs["return_dict"]:
return decoder_outputs + inputs["encoder_outputs"]
return TFSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state,
encoder_hidden_states=inputs["encoder_outputs"].hidden_states,
encoder_attentions=inputs["encoder_outputs"].attentions,
)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
def get_output_embeddings(self):
return self.shared
@add_start_docstrings(
"The {{cookiecutter.uppercase_modelname}} Model with a language modeling head. Can be used for summarization.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.model = TF{{cookiecutter.camelcase_modelname}}Model(config, name="model")
self.use_cache = config.use_cache
# final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency.
self.final_logits_bias = self.add_weight(
name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
)
def get_decoder(self):
return self.model.decoder
def resize_token_embeddings(self, new_num_tokens):
super().resize_token_embeddings(new_num_tokens=new_num_tokens)
# {{cookiecutter.uppercase_modelname}} is a special case where the bias has two dimensions
# and not named just `bias`
if new_num_tokens is not None:
num_tokens_to_copy = min(self.final_logits_bias.shape[0], new_num_tokens)
init_bias = tf.zeros((new_num_tokens,))
init_bias[:num_tokens_to_copy] = self.final_logits_bias.value()[:num_tokens_to_copy]
self.final_logits_bias = self.add_weight(
shape=(1, new_num_tokens),
initializer="zeros",
trainable=False,
name="final_logits_bias",
)
self.final_logits_bias.assign(init_bias)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs: Optional[TFBaseModelOutput] = None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
**kwargs,
):
"""
Returns:
Examples::
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> import tensorflow as tf
>>> mname = '{{cookiecutter.checkpoint_identifier}}'
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained(mname)
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained(mname)
>>> batch = tokenizer([TXT], return_tensors='tf')
>>> logits = model(inputs=batch.input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
"""
inputs = input_processing(
func=self.call,
config=self.config,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
training=training,
kwargs_call=kwargs,
)
if inputs["labels"] is not None:
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
decoder_input_ids=inputs["decoder_input_ids"],
encoder_outputs=inputs["encoder_outputs"],
decoder_attention_mask=inputs["decoder_attention_mask"],
past_key_values=inputs["past_key_values"],
inputs_embeds=inputs["inputs_embeds"],
decoder_inputs_embeds=inputs["decoder_inputs_embeds"],
use_cache=inputs["use_cache"],
output_attentions=inputs["output_attentions"],
output_hidden_states=inputs["output_hidden_states"],
return_dict=inputs["return_dict"],
training=inputs["training"]
)
lm_logits = self.model.shared(outputs[0], mode="linear")
lm_logits = lm_logits + self.final_logits_bias
masked_lm_loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], lm_logits)
if not inputs["return_dict"]:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values, # index 1 of d outputs
decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
encoder_last_hidden_state=outputs.last_hidden_state, # index 0 of encoder outputs
encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
encoder_attentions=outputs.encoder_attentions, # 2 of e out
)
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs) -> Dict:
assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}"
if len(past) == 1:
assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}"
encoder_outputs = TFBaseModelOutput(last_hidden_state=past[0])
past_key_values = None
else:
assert (
len(past) == 2
), "`past` has to be of length 2 with the encoder_outputs at the first position and past_key_values at the second position."
encoder_outputs, past_key_values = past
if isinstance(encoder_outputs, tuple):
assert isinstance(
encoder_outputs[0], tf.Tensor
), f"`encoder_outputs[0]` has to be of type `tf.Tensor`, but is {type(encoder_outputs[0])}"
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs[0])
elif isinstance(encoder_outputs, tf.Tensor):
encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs)
assert (
past_key_values
), f"decoder cached states must be truthy. got {past_key_values} from the 2nd element of past"
decoder_input_ids = decoder_input_ids[:, -1:]
assert isinstance(
encoder_outputs, TFBaseModelOutput
), f"encoder_outputs should be a TFBaseModelOutput, Instead got {type(encoder_outputs)}."
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past, beam_idx):
if len(past) == 1:
return past
past_key_values = past[1]
reordered_past = ()
for layer_past_key_values in past_key_values:
reordered_past += (
tuple(tf.gather(layer_past_key_value, beam_idx) for layer_past_key_value in layer_past_key_values),
)
return (past[0], reordered_past)
def get_output_embeddings(self):
return self.model.shared
def get_encoder(self):
return self.model.encoder
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)
{% endif -%}
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
# limitations under the License. # limitations under the License.
""" PyTorch {{cookiecutter.modelname}} model. """ """ PyTorch {{cookiecutter.modelname}} model. """
{% if cookiecutter.is_encoder_decoder_model == "False" %}
import math import math
...@@ -1391,3 +1392,1359 @@ class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.ca ...@@ -1391,3 +1392,1359 @@ class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.ca
hidden_states=outputs.hidden_states, hidden_states=outputs.hidden_states,
attentions=outputs.attentions, attentions=outputs.attentions,
) )
{% else %}
import random
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config"
_TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer"
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST = [
"{{cookiecutter.checkpoint_identifier}}",
# See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}}
]
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float("-inf"))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
def _expand_mask(
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
def {{cookiecutter.camelcase_modelname}}LayerNorm(normalized_shape: torch.Size, eps: float = 1e-5, elementwise_affine: bool = True):
if torch.cuda.is_available():
try:
from apex.normalization import FusedLayerNorm
return FusedLayerNorm(normalized_shape, eps, elementwise_affine)
except ImportError:
pass
return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine)
class {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
assert padding_idx is not None, "`padding_idx` should not be None, but of type int"
num_embeddings
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
class {{cookiecutter.camelcase_modelname}}Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert (
self.head_dim * num_heads == self.embed_dim
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {num_heads})."
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
assert attn_weights.size() == (
bsz * self.num_heads,
tgt_len,
src_len,
), f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
if attention_mask is not None:
assert attention_mask.size() == (
bsz,
1,
tgt_len,
src_len,
), f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
assert attn_output.size() == (
bsz * self.num_heads,
tgt_len,
self.head_dim,
), f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
attn_output = (
attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
.transpose(1, 2)
.reshape(bsz, tgt_len, embed_dim)
)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class {{cookiecutter.camelcase_modelname}}EncoderLayer(nn.Module):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = {{cookiecutter.camelcase_modelname}}Attention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = {{cookiecutter.camelcase_modelname}}LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = {{cookiecutter.camelcase_modelname}}LayerNorm(self.embed_dim)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (:obj:`bool`): Whether the base model outputs attentions.
This requires the attentions tensor to be reshaped in this function.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return hidden_states, attn_weights
class {{cookiecutter.camelcase_modelname}}DecoderLayer(nn.Module):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = {{cookiecutter.camelcase_modelname}}Attention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = {{cookiecutter.camelcase_modelname}}LayerNorm(self.embed_dim)
self.encoder_attn = {{cookiecutter.camelcase_modelname}}Attention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = {{cookiecutter.camelcase_modelname}}LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = {{cookiecutter.camelcase_modelname}}LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[torch.Tensor] = False,
):
"""
Args:
hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (:obj:`bool`): Whether the base model outputs attentions.
This requires the attentions tensor to be reshaped in this function.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
return (
hidden_states,
self_attn_weights,
present_key_value,
cross_attn_weights,
)
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->{{cookiecutter.camelcase_modelname}}
class {{cookiecutter.camelcase_modelname}}ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
config_class = {{cookiecutter.camelcase_modelname}}Config
base_model_prefix = "model"
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.{{cookiecutter.camelcase_modelname}}Config`):
Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
{{cookiecutter.uppercase_modelname}}_GENERATION_EXAMPLE = r"""
Summarization example::
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}Config
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='pt')
>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True)
>>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids])
"""
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using :class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`):
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the :obj:`input_ids` to the right, following the paper.
decoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, tgt_seq_len)`, `optional`):
Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will
also be used by default.
If you want to change padding behavior, you should read :func:`modeling_{{cookiecutter.lowercase_modelname}}._prepare_decoder_inputs` and
modify to your needs. See diagram 1 in `the paper <https://arxiv.org/abs/1910.13461>`__ for more
information on the default strategy.
encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`):
Tuple consists of (:obj:`last_hidden_state`, `optional`: :obj:`hidden_states`, `optional`:
:obj:`attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)`,
`optional`) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded
representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds`
have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert
:obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds`
takes the value of :obj:`inputs_embeds`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
class {{cookiecutter.camelcase_modelname}}Encoder({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`{{cookiecutter.camelcase_modelname}}EncoderLayer`.
Args:
config: {{cookiecutter.camelcase_modelname}}Config
embed_tokens (torch.nn.Embedding): output embedding
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
self.padding_idx,
)
self.layers = nn.ModuleList([{{cookiecutter.camelcase_modelname}}EncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = {{cookiecutter.camelcase_modelname}}LayerNorm(embed_dim)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
attn = None
else:
hidden_states, attn = encoder_layer(hidden_states, attention_mask, output_attentions=output_attentions)
if output_attentions:
all_attentions = all_attentions + (attn,)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class {{cookiecutter.camelcase_modelname}}Decoder({{cookiecutter.camelcase_modelname}}PreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`{{cookiecutter.camelcase_modelname}}DecoderLayer`
Args:
config: {{cookiecutter.camelcase_modelname}}Config
embed_tokens (torch.nn.Embedding): output embedding
"""
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = {{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
self.padding_idx,
)
self.layers = nn.ModuleList([{{cookiecutter.camelcase_modelname}}DecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = {{cookiecutter.camelcase_modelname}}LayerNorm(config.d_model)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using :class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (:obj:`torch.LongTensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last
:obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of
shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size,
sequence_length)`.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert :obj:`input_ids` indices
into associated vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
returned tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors
for more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
).to(self.device)
if attention_mask is not None and combined_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = combined_attention_mask + _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, present_key_value, layer_cross_attn = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
)
if use_cache:
next_decoder_cache += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
all_cross_attentions += (layer_cross_attn,)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare {{cookiecutter.modelname}} Model outputting raw hidden-states without any specific head on top.",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = {{cookiecutter.camelcase_modelname}}Encoder(config, self.shared)
self.decoder = {{cookiecutter.camelcase_modelname}}Decoder(config, self.shared)
self.init_weights()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="{{cookiecutter.checkpoint_identifier}}",
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The {{cookiecutter.modelname}} Model with a language modeling head. Can be used for summarization.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING
)
class {{cookiecutter.camelcase_modelname}}ForConditionalGeneration({{cookiecutter.camelcase_modelname}}PreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [
r"final_logits_bias",
r"encoder\.version",
r"decoder\.version",
r"lm_head\.weight",
]
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config):
super().__init__(config)
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
self.init_weights()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings({{cookiecutter.uppercase_modelname}}_GENERATION_EXAMPLE)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
Returns:
Conditional generation example::
>>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
>>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
>>> input_ids = tokenizer([TXT], return_tensors='pt')['input_ids']
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self, decoder_input_ids, past=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs
):
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
"""
{{cookiecutter.camelcase_modelname}} model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForSequenceClassification({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs):
super().__init__(config, **kwargs)
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.classification_head = {{cookiecutter.camelcase_modelname}}ClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="{{cookiecutter.checkpoint_identifier}}",
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id)
if len(torch.unique(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
{{cookiecutter.modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
{{cookiecutter.uppercase_modelname}}_START_DOCSTRING,
)
class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.camelcase_modelname}}PreTrainedModel):
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = {{cookiecutter.camelcase_modelname}}Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint="{{cookiecutter.checkpoint_identifier}}",
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
start_positions=None,
end_positions=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
{% endif -%}
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
{% if cookiecutter.is_encoder_decoder_model == "False" %}
import unittest import unittest
...@@ -318,3 +319,272 @@ class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCa ...@@ -318,3 +319,272 @@ class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCa
] ]
) )
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
{% else %}
import unittest
from transformers import {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import tensorflow as tf
from transformers import TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTester:
config_cls = {{cookiecutter.camelcase_modelname}}Config
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
input_ids = tf.concat([input_ids, eos_tensor], axis=1)
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.config_cls(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_ids=[2],
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
**self.config_updates,
)
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = TF{{cookiecutter.camelcase_modelname}}Model(config=config).get_decoder()
input_ids = inputs_dict["input_ids"]
input_ids = input_ids[:1, :]
attention_mask = inputs_dict["attention_mask"][:1, :]
self.batch_size = 1
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
past_key_values = past_key_values[1]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]
self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
output_from_past_slice = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if attention_mask is None:
attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
if decoder_attention_mask is None:
decoder_attention_mask = tf.cast(tf.math.not_equal(decoder_input_ids, config.pad_token_id), tf.int8)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model) if is_tf_available() else ()
all_generative_model_classes = (TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,) if is_tf_available() else ()
is_encoder_decoder = True
test_pruning = False
def setUp(self):
self.model_tester = TF{{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
x = model.get_output_layer_with_bias()
assert x is None
name = model.get_prefix_bias_name()
assert name is None
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if tf.debugging.assert_near(a, b, atol=atol):
return True
raise
except Exception:
msg = "{} != {}".format(a, b)
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return tf.constant(tok_lst, dtype=tf.int32)
TOLERANCE = 1e-4
@slow
@require_sentencepiece
@require_tokenizers
@require_tf
class TF{{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase):
def test_inference_no_head(self):
model = TF{{cookiecutter.camelcase_modelname}}Model.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
# change to intended input here
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 11, 1024)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.Tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]],
)
self.assertTrue(tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def test_inference_with_head(self):
model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
# change to intended input here
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
output = model(**inputs_dict)[0]
expected_shape = (1, 11, 1024)
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = tf.Tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]],
)
self.assertTrue(tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def test_seq_to_seq_generation(self):
hf = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
tok = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
batch_input = [
# string 1,
# string 2,
# string 3,
# string 4,
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
dct = tok.batch_encode_plus(
batch_input,
max_length=512,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="tf",
)
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"],
attention_mask=dct["attention_mask"],
num_beams=2,
)
EXPECTED = [
# here expected 1,
# here expected 2,
# here expected 3,
# here expected 4,
]
generated = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated == EXPECTED
{%- endif %}
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
""" Testing suite for the PyTorch {{cookiecutter.modelname}} model. """ """ Testing suite for the PyTorch {{cookiecutter.modelname}} model. """
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
import unittest import unittest
from tests.test_modeling_common import floats_tensor from tests.test_modeling_common import floats_tensor
...@@ -406,3 +407,395 @@ class {{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase ...@@ -406,3 +407,395 @@ class {{cookiecutter.camelcase_modelname}}ModelIntegrationTest(unittest.TestCase
) )
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
{% else -%}
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import is_torch_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
{{cookiecutter.camelcase_modelname}}Config,
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
{{cookiecutter.camelcase_modelname}}Tokenizer,
)
from transformers.models.{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.camelcase_modelname}}Decoder,
{{cookiecutter.camelcase_modelname}}Encoder,
)
def prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
@require_torch
class {{cookiecutter.camelcase_modelname}}ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = {{cookiecutter.camelcase_modelname}}Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
)
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = {{cookiecutter.camelcase_modelname}}Model(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = {{cookiecutter.camelcase_modelname}}Model(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = {{cookiecutter.camelcase_modelname}}Encoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = {{cookiecutter.camelcase_modelname}}Decoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
@require_torch
class {{cookiecutter.camelcase_modelname}}ModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
({{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering)
if is_torch_available()
else ()
)
all_generative_model_classes = ({{cookiecutter.camelcase_modelname}}ForConditionalGeneration,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_missing_keys = False
def setUp(self):
self.model_tester = {{cookiecutter.camelcase_modelname}}ModelTester(self)
self.config_tester = ConfigTester(self, config_class={{cookiecutter.camelcase_modelname}}Config)
def test_config(self):
self.config_tester.run_common_tests()
def test_initialization_more(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
model = {{cookiecutter.camelcase_modelname}}Model(config)
model.to(torch_device)
model.eval()
# test init
self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())
def _check_var(module):
"""Check that we initialized various parameters from N(0, config.init_std)."""
self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)
_check_var(model.encoder.embed_tokens)
_check_var(model.encoder.layers[0].self_attn.k_proj)
_check_var(model.encoder.layers[0].fc1)
_check_var(model.encoder.embed_positions)
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
# {{cookiecutter.camelcase_modelname}}ForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in ({{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
TOLERANCE = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class {{cookiecutter.camelcase_modelname}}ModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
def test_inference_no_head(self):
model = {{cookiecutter.camelcase_modelname}}Model.from_pretrained('{{cookiecutter.checkpoint_identifier}}').to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[2, 0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = torch.tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def test_inference_head(self):
model = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}').to(torch_device)
# change to intended input
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
decoder_input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
inputs_dict = prepare_{{cookiecutter.lowercase_modelname}}_inputs_dict(model.config, input_ids, decoder_input_ids)
with torch.no_grad():
output = model(**inputs_dict)[0]
expected_shape = torch.Size((1, 11, model.config.vocab_size))
self.assertEqual(output.shape, expected_shape)
# change to expected output here
expected_slice = torch.tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))
def test_seq_to_seq_generation(self):
hf = {{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained('{{cookiecutter.checkpoint_identifier}}').to(torch_device)
tok = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained('{{cookiecutter.checkpoint_identifier}}')
batch_input = [
# string 1,
# string 2,
# string 3,
# string 4,
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
dct = tok.batch_encode_plus(
batch_input,
max_length=512,
padding="max_length",
truncation_strategy="only_first",
truncation=True,
return_tensors="pt",
)
hypotheses_batch = hf.generate(
input_ids=dct["input_ids"].to(torch_device),
attention_mask=dct["attention_mask"].to(torch_device),
num_beams=2,
)
EXPECTED = [
# here expected 1,
# here expected 2,
# here expected 3,
# here expected 4,
]
generated = tok.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
assert generated == EXPECTED
{% endif -%}
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
# To replace in: "src/transformers/__init__.py" # To replace in: "src/transformers/__init__.py"
# Below: "if is_torch_available():" if generating PyTorch # Below: "if is_torch_available():" if generating PyTorch
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
from .models.{{cookiecutter.lowercase_modelname}} import ( from .models.{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForMaskedLM,
...@@ -41,10 +42,20 @@ ...@@ -41,10 +42,20 @@
{{cookiecutter.camelcase_modelname}}PreTrainedModel, {{cookiecutter.camelcase_modelname}}PreTrainedModel,
load_tf_weights_in_{{cookiecutter.lowercase_modelname}}, load_tf_weights_in_{{cookiecutter.lowercase_modelname}},
) )
{% else %}
from .models.{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
)
{% endif -%}
# End. # End.
# Below: "if is_tf_available():" if generating TensorFlow # Below: "if is_tf_available():" if generating TensorFlow
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" %}
from .models.{{cookiecutter.lowercase_modelname}} import ( from .models.{{cookiecutter.lowercase_modelname}} import (
TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST,
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
...@@ -57,11 +68,19 @@ ...@@ -57,11 +68,19 @@
TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
) )
{% else %}
from .models.{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
TF{{cookiecutter.camelcase_modelname}}PreTrainedModel,
)
{% endif -%}
# End. # End.
# Below: "if is_tokenizers_available():" # Below: "if is_tokenizers_available():"
# Replace with: # Replace with:
from models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}TokenizerFast from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}TokenizerFast
# End.
# Below: "from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig" # Below: "from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig"
# Replace with: # Replace with:
...@@ -101,6 +120,7 @@ from ..{{cookiecutter.lowercase_modelname}}.configuration_{{cookiecutter.lowerca ...@@ -101,6 +120,7 @@ from ..{{cookiecutter.lowercase_modelname}}.configuration_{{cookiecutter.lowerca
# Below: "# Add modeling imports here" # Below: "# Add modeling imports here"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import ( from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForMaskedLM,
{{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForCausalLM,
...@@ -110,6 +130,14 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo ...@@ -110,6 +130,14 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo
{{cookiecutter.camelcase_modelname}}ForTokenClassification, {{cookiecutter.camelcase_modelname}}ForTokenClassification,
{{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}Model,
) )
{% else -%}
from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import (
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering,
{{cookiecutter.camelcase_modelname}}ForSequenceClassification,
{{cookiecutter.camelcase_modelname}}Model,
)
{% endif -%}
# End. # End.
# Below: "# Base model mapping" # Below: "# Base model mapping"
...@@ -119,17 +147,27 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo ...@@ -119,17 +147,27 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo
# Below: "# Model with LM heads mapping" # Below: "# Model with LM heads mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM), ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM),
{% else %}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration),
{% endif -%}
# End. # End.
# Below: "# Model for Causal LM mapping" # Below: "# Model for Causal LM mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForCausalLM), ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForCausalLM),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Masked LM mapping" # Below: "# Model for Masked LM mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM), ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Sequence Classification mapping" # Below: "# Model for Sequence Classification mapping"
...@@ -144,14 +182,27 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo ...@@ -144,14 +182,27 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo
# Below: "# Model for Token Classification mapping" # Below: "# Model for Token Classification mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForTokenClassification), ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForTokenClassification),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Multiple Choice mapping" # Below: "# Model for Multiple Choice mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMultipleChoice), ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMultipleChoice),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Seq2Seq Causal LM mapping"
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
{% else %}
({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration),
{% endif -%}
# End.
# To replace in: "src/transformers/models/auto/modeling_tf_auto.py" if generating TensorFlow # To replace in: "src/transformers/models/auto/modeling_tf_auto.py" if generating TensorFlow
# Below: "from .configuration_auto import (" # Below: "from .configuration_auto import ("
...@@ -161,6 +212,7 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo ...@@ -161,6 +212,7 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_mo
# Below: "# Add modeling imports here" # Below: "# Add modeling imports here"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase_modelname}} import ( from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM,
TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForCausalLM,
...@@ -170,6 +222,12 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase ...@@ -170,6 +222,12 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase
TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification,
TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}Model,
) )
{% else -%}
from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase_modelname}} import (
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration,
TF{{cookiecutter.camelcase_modelname}}Model,
)
{% endif -%}
# End. # End.
# Below: "# Base model mapping" # Below: "# Base model mapping"
...@@ -179,35 +237,65 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase ...@@ -179,35 +237,65 @@ from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase
# Below: "# Model with LM heads mapping" # Below: "# Model with LM heads mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM),
{% else %}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration),
{% endif -%}
# End. # End.
# Below: "# Model for Causal LM mapping" # Below: "# Model for Causal LM mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForCausalLM), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForCausalLM),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Masked LM mapping" # Below: "# Model for Masked LM mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Sequence Classification mapping" # Below: "# Model for Sequence Classification mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Question Answering mapping" # Below: "# Model for Question Answering mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Token Classification mapping" # Below: "# Model for Token Classification mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification),
{% else -%}
{% endif -%}
# End. # End.
# Below: "# Model for Multiple Choice mapping" # Below: "# Model for Multiple Choice mapping"
# Replace with: # Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice), ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice),
{% else -%}
{% endif -%}
# End.
# Below: "# Model for Seq2Seq Causal LM mapping"
# Replace with:
{% if cookiecutter.is_encoder_decoder_model == "False" -%}
{% else %}
({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration),
{% endif -%}
# End. # End.
...@@ -56,6 +56,47 @@ class {{cookiecutter.camelcase_modelname}}TokenizerFast(BertTokenizerFast): ...@@ -56,6 +56,47 @@ class {{cookiecutter.camelcase_modelname}}TokenizerFast(BertTokenizerFast):
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
slow_tokenizer_class = {{cookiecutter.camelcase_modelname}}Tokenizer slow_tokenizer_class = {{cookiecutter.camelcase_modelname}}Tokenizer
{%- elif cookiecutter.tokenizer_type == "Based on BART" %}
from ...utils import logging
from ..bart.tokenization_bart_fast import BartTokenizerFast
from .tokenization_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Tokenizer
logger = logging.get_logger(__name__)
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/vocab.json",
},
"merges_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/merges.txt",
},
"tokenizer_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"{{cookiecutter.checkpoint_identifier}}": 1024,
}
class {{cookiecutter.camelcase_modelname}}TokenizerFast(BartTokenizerFast):
r"""
Construct a "fast" {{cookiecutter.modelname}} tokenizer (backed by HuggingFace's `tokenizers` library).
:class:`~transformers.{{cookiecutter.camelcase_modelname}}TokenizerFast` is identical to :class:`~transformers.BartTokenizerFast` and runs
end-to-end tokenization: punctuation splitting and wordpiece.
Refer to superclass :class:`~transformers.BartTokenizerFast` for usage examples and documentation concerning
parameters.
"""
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = {{cookiecutter.camelcase_modelname}}Tokenizer
{%- elif cookiecutter.tokenizer_type == "Standalone" %} {%- elif cookiecutter.tokenizer_type == "Standalone" %}
from typing import List, Optional from typing import List, Optional
......
...@@ -54,6 +54,45 @@ class {{cookiecutter.camelcase_modelname}}Tokenizer(BertTokenizer): ...@@ -54,6 +54,45 @@ class {{cookiecutter.camelcase_modelname}}Tokenizer(BertTokenizer):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
{%- elif cookiecutter.tokenizer_type == "Based on BART" %}
from ...utils import logging
from ..bart.tokenization_bart import BartTokenizer
logger = logging.get_logger(__name__)
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/vocab.json",
},
"merges_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/merges.txt",
},
"tokenizer_file": {
"{{cookiecutter.checkpoint_identifier}}": "https://huggingface.co/{{cookiecutter.checkpoint_identifier}}/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"{{cookiecutter.checkpoint_identifier}}": 1024,
}
class {{cookiecutter.camelcase_modelname}}Tokenizer(BartTokenizer):
"""
Construct a {{cookiecutter.modelname}} tokenizer.
:class:`~transformers.{{cookiecutter.camelcase_modelname}}Tokenizer` is identical to :class:`~transformers.BartTokenizer` and runs end-to-end
tokenization: punctuation splitting and wordpiece.
Refer to superclass :class:`~transformers.BartTokenizer` for usage examples and documentation concerning
parameters.
"""
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
{%- elif cookiecutter.tokenizer_type == "Standalone" %} {%- elif cookiecutter.tokenizer_type == "Standalone" %}
from typing import List, Optional from typing import List, Optional
...@@ -289,5 +328,4 @@ class {{cookiecutter.camelcase_modelname}}TokenizerFast(PreTrainedTokenizerFast) ...@@ -289,5 +328,4 @@ class {{cookiecutter.camelcase_modelname}}TokenizerFast(PreTrainedTokenizerFast)
return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
{% endif %} {% endif %}
...@@ -57,7 +57,7 @@ Tips: ...@@ -57,7 +57,7 @@ Tips:
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}Model .. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}Model
:members: forward :members: forward
{% if cookiecutter.is_encoder_decoder_model == "False" %}
{{cookiecutter.camelcase_modelname}}ForCausalLM {{cookiecutter.camelcase_modelname}}ForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...@@ -83,7 +83,7 @@ Tips: ...@@ -83,7 +83,7 @@ Tips:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice .. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice
:members: :members: forward
{{cookiecutter.camelcase_modelname}}ForTokenClassification {{cookiecutter.camelcase_modelname}}ForTokenClassification
...@@ -99,6 +99,29 @@ Tips: ...@@ -99,6 +99,29 @@ Tips:
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForQuestionAnswering .. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
:members: forward :members: forward
{%- else %}
{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
:members: forward
{{cookiecutter.camelcase_modelname}}ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification
:members: forward
{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
:members: forward
{% endif -%}
{% endif -%} {% endif -%}
{% if "TensorFlow" in cookiecutter.generate_tensorflow_and_pytorch -%} {% if "TensorFlow" in cookiecutter.generate_tensorflow_and_pytorch -%}
...@@ -108,7 +131,7 @@ TF{{cookiecutter.camelcase_modelname}}Model ...@@ -108,7 +131,7 @@ TF{{cookiecutter.camelcase_modelname}}Model
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}Model .. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}Model
:members: call :members: call
{% if cookiecutter.is_encoder_decoder_model == "False" %}
TF{{cookiecutter.camelcase_modelname}}ForMaskedLM TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...@@ -120,7 +143,7 @@ TF{{cookiecutter.camelcase_modelname}}ForCausalLM ...@@ -120,7 +143,7 @@ TF{{cookiecutter.camelcase_modelname}}ForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForCausalLM .. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForCausalLM
:members: forward :members: call
TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
...@@ -151,4 +174,11 @@ TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering ...@@ -151,4 +174,11 @@ TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
:members: call :members: call
{%- else %}
TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
:members: call
{% endif -%}
{% endif -%} {% endif -%}
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
"camelcase_modelname": "BrandNewBert", "camelcase_modelname": "BrandNewBert",
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased", "checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": ["Based on BERT", "Standalone"], "tokenizer_type": ["Based on BERT", "Based on BART", "Standalone"],
"generate_tensorflow_and_pytorch": ["PyTorch & TensorFlow", "PyTorch", "TensorFlow"] "generate_tensorflow_and_pytorch": ["PyTorch & TensorFlow", "PyTorch", "TensorFlow"],
} "is_encoder_decoder_model": ["True", "False"]
\ No newline at end of file }
...@@ -6,5 +6,6 @@ ...@@ -6,5 +6,6 @@
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased", "checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT", "tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "PyTorch & TensorFlow" "generate_tensorflow_and_pytorch": "PyTorch & TensorFlow",
"is_encoder_decoder_model": "False"
} }
...@@ -6,5 +6,6 @@ ...@@ -6,5 +6,6 @@
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased", "checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT", "tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "PyTorch" "generate_tensorflow_and_pytorch": "PyTorch",
"is_encoder_decoder_model": "False"
} }
{
"modelname": "NewENCDEC",
"uppercase_modelname": "NEW_ENC_DEC",
"lowercase_modelname": "new_enc_dec",
"camelcase_modelname": "NewEncDec",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "new-enc-dec-base",
"tokenizer_type": "Based on BART",
"generate_tensorflow_and_pytorch": "PyTorch",
"is_encoder_decoder_model": "True"
}
...@@ -6,5 +6,6 @@ ...@@ -6,5 +6,6 @@
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"checkpoint_identifier": "bi-brand-new-bert-base-cased", "checkpoint_identifier": "bi-brand-new-bert-base-cased",
"tokenizer_type": "Standalone", "tokenizer_type": "Standalone",
"generate_tensorflow_and_pytorch": "PyTorch & TensorFlow" "generate_tensorflow_and_pytorch": "PyTorch & TensorFlow",
"is_encoder_decoder_model": "False"
} }
...@@ -6,5 +6,6 @@ ...@@ -6,5 +6,6 @@
"authors": "The HuggingFace Team", "authors": "The HuggingFace Team",
"checkpoint_identifier": "brand-new-bert-base-cased", "checkpoint_identifier": "brand-new-bert-base-cased",
"tokenizer_type": "Based on BERT", "tokenizer_type": "Based on BERT",
"generate_tensorflow_and_pytorch": "TensorFlow" "generate_tensorflow_and_pytorch": "TensorFlow",
"is_encoder_decoder_model": "False"
} }
{
"modelname": "NewTFENCDEC",
"uppercase_modelname": "NEW_TF_ENC_DEC",
"lowercase_modelname": "new_tf_enc_dec",
"camelcase_modelname": "NewTFEncDec",
"authors": "The HuggingFace Team",
"checkpoint_identifier": "new-tf-enc-dec-base",
"tokenizer_type": "Based on BART",
"generate_tensorflow_and_pytorch": "TensorFlow",
"is_encoder_decoder_model": "True"
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment