Unverified Commit cb38ffcc authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[PretrainedFeatureExtractor] + Wav2Vec2FeatureExtractor, Wav2Vec2Processor,...

[PretrainedFeatureExtractor] + Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2Tokenizer (#10324)

* push to show

* small improvement

* small improvement

* Update src/transformers/feature_extraction_utils.py

* Update src/transformers/feature_extraction_utils.py

* implement base

* add common tests

* make all tests pass for wav2vec2

* make padding work & add more tests

* finalize feature extractor utils

* add call method to feature extraction

* finalize feature processor

* finish tokenizer

* finish general processor design

* finish tests

* typo

* remove bogus file

* finish docstring

* add docs

* finish docs

* small fix

* correct docs

* save intermediate

* load changes

* apply changes

* apply changes to doc

* change tests

* apply surajs recommend

* final changes

* Apply suggestions from code review

* fix typo

* fix import

* correct docstring
parent 9dc78257
...@@ -4,10 +4,9 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union ...@@ -4,10 +4,9 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import numpy as np import numpy as np
from ..data import SquadExample, SquadFeatures, squad_convert_examples_to_features from ..data import SquadExample, SquadFeatures, squad_convert_examples_to_features
from ..file_utils import add_end_docstrings, is_tf_available, is_torch_available from ..file_utils import PaddingStrategy, add_end_docstrings, is_tf_available, is_torch_available
from ..modelcard import ModelCard from ..modelcard import ModelCard
from ..tokenization_utils import PreTrainedTokenizer from ..tokenization_utils import PreTrainedTokenizer
from ..tokenization_utils_base import PaddingStrategy
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Pipeline
......
...@@ -205,7 +205,7 @@ class TableQuestionAnsweringPipeline(Pipeline): ...@@ -205,7 +205,7 @@ class TableQuestionAnsweringPipeline(Pipeline):
Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the
inference to be done sequentially to extract relations within sequences, given their conversational inference to be done sequentially to extract relations within sequences, given their conversational
nature. nature.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values: Activates and controls padding. Accepts the following values:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
......
...@@ -21,7 +21,7 @@ import re ...@@ -21,7 +21,7 @@ import re
import unicodedata import unicodedata
from typing import Any, Dict, List, Optional, Tuple, Union, overload from typing import Any, Dict, List, Optional, Tuple, Union, overload
from .file_utils import add_end_docstrings from .file_utils import PaddingStrategy, TensorType, add_end_docstrings
from .tokenization_utils_base import ( from .tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING, ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
...@@ -30,11 +30,9 @@ from .tokenization_utils_base import ( ...@@ -30,11 +30,9 @@ from .tokenization_utils_base import (
BatchEncoding, BatchEncoding,
EncodedInput, EncodedInput,
EncodedInputPair, EncodedInputPair,
PaddingStrategy,
PreTokenizedInput, PreTokenizedInput,
PreTokenizedInputPair, PreTokenizedInputPair,
PreTrainedTokenizerBase, PreTrainedTokenizerBase,
TensorType,
TextInput, TextInput,
TextInputPair, TextInputPair,
TruncationStrategy, TruncationStrategy,
......
...@@ -25,7 +25,6 @@ import warnings ...@@ -25,7 +25,6 @@ import warnings
from collections import OrderedDict, UserDict from collections import OrderedDict, UserDict
from contextlib import contextmanager from contextlib import contextmanager
from dataclasses import dataclass, field from dataclasses import dataclass, field
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union from typing import TYPE_CHECKING, Any, Dict, List, NamedTuple, Optional, Sequence, Tuple, Union
import numpy as np import numpy as np
...@@ -33,6 +32,14 @@ import numpy as np ...@@ -33,6 +32,14 @@ import numpy as np
import requests import requests
from .file_utils import ( from .file_utils import (
ExplicitEnum,
PaddingStrategy,
TensorType,
_is_jax,
_is_numpy,
_is_tensorflow,
_is_torch,
_is_torch_device,
add_end_docstrings, add_end_docstrings,
cached_path, cached_path,
hf_bucket_url, hf_bucket_url,
...@@ -41,6 +48,7 @@ from .file_utils import ( ...@@ -41,6 +48,7 @@ from .file_utils import (
is_tf_available, is_tf_available,
is_tokenizers_available, is_tokenizers_available,
is_torch_available, is_torch_available,
to_py_obj,
torch_required, torch_required,
) )
from .utils import logging from .utils import logging
...@@ -55,34 +63,6 @@ if TYPE_CHECKING: ...@@ -55,34 +63,6 @@ if TYPE_CHECKING:
import jax.numpy as jnp # noqa: F401 import jax.numpy as jnp # noqa: F401
def _is_numpy(x):
return isinstance(x, np.ndarray)
def _is_torch(x):
import torch
return isinstance(x, torch.Tensor)
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
def _is_tensorflow(x):
import tensorflow as tf
return isinstance(x, tf.Tensor)
def _is_jax(x):
import jax.numpy as jnp # noqa: F811
return isinstance(x, jnp.ndarray)
if is_tokenizers_available(): if is_tokenizers_available():
from tokenizers import AddedToken from tokenizers import AddedToken
from tokenizers import Encoding as EncodingFast from tokenizers import Encoding as EncodingFast
...@@ -134,19 +114,6 @@ TOKENIZER_CONFIG_FILE = "tokenizer_config.json" ...@@ -134,19 +114,6 @@ TOKENIZER_CONFIG_FILE = "tokenizer_config.json"
FULL_TOKENIZER_FILE = "tokenizer.json" FULL_TOKENIZER_FILE = "tokenizer.json"
class ExplicitEnum(Enum):
"""
Enum with more explicit error message for missing values.
"""
@classmethod
def _missing_(cls, value):
raise ValueError(
"%r is not a valid %s, please select one of %s"
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
)
class TruncationStrategy(ExplicitEnum): class TruncationStrategy(ExplicitEnum):
""" """
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
...@@ -159,29 +126,6 @@ class TruncationStrategy(ExplicitEnum): ...@@ -159,29 +126,6 @@ class TruncationStrategy(ExplicitEnum):
DO_NOT_TRUNCATE = "do_not_truncate" DO_NOT_TRUNCATE = "do_not_truncate"
class PaddingStrategy(ExplicitEnum):
"""
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
in an IDE.
"""
LONGEST = "longest"
MAX_LENGTH = "max_length"
DO_NOT_PAD = "do_not_pad"
class TensorType(ExplicitEnum):
"""
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
tab-completion in an IDE.
"""
PYTORCH = "pt"
TENSORFLOW = "tf"
NUMPY = "np"
JAX = "jax"
class CharSpan(NamedTuple): class CharSpan(NamedTuple):
""" """
Character span in the original string. Character span in the original string.
...@@ -208,24 +152,6 @@ class TokenSpan(NamedTuple): ...@@ -208,24 +152,6 @@ class TokenSpan(NamedTuple):
end: int end: int
def to_py_obj(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
"""
if isinstance(obj, (dict, BatchEncoding)):
return {k: to_py_obj(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [to_py_obj(o) for o in obj]
elif is_tf_available() and _is_tensorflow(obj):
return obj.numpy().tolist()
elif is_torch_available() and _is_torch(obj):
return obj.detach().cpu().tolist()
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return obj
class BatchEncoding(UserDict): class BatchEncoding(UserDict):
""" """
Holds the output of the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus` and Holds the output of the :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizerBase.encode_plus` and
...@@ -715,9 +641,9 @@ class BatchEncoding(UserDict): ...@@ -715,9 +641,9 @@ class BatchEncoding(UserDict):
Convert the inner content to tensors. Convert the inner content to tensors.
Args: Args:
tensor_type (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
The type of tensors to use. If :obj:`str`, should be one of the values of the enum The type of tensors to use. If :obj:`str`, should be one of the values of the enum
:class:`~transformers.tokenization_utils_base.TensorType`. If :obj:`None`, no modification is done. :class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done.
prepend_batch_axis (:obj:`int`, `optional`, defaults to :obj:`False`): prepend_batch_axis (:obj:`int`, `optional`, defaults to :obj:`False`):
Whether or not to add the batch dimension during the conversion. Whether or not to add the batch dimension during the conversion.
""" """
...@@ -810,9 +736,7 @@ class BatchEncoding(UserDict): ...@@ -810,9 +736,7 @@ class BatchEncoding(UserDict):
if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int):
self.data = {k: v.to(device=device) for k, v in self.data.items()} self.data = {k: v.to(device=device) for k, v in self.data.items()}
else: else:
logger.warning( logger.warning(f"Attempting to cast a BatchEncoding to type {str(device)}. This is not supported.")
f"Attempting to cast a BatchEncoding to another type, {str(device)}. This is not supported."
)
return self return self
...@@ -1321,7 +1245,7 @@ class SpecialTokensMixin: ...@@ -1321,7 +1245,7 @@ class SpecialTokensMixin:
ENCODE_KWARGS_DOCSTRING = r""" ENCODE_KWARGS_DOCSTRING = r"""
add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to encode the sequences with the special tokens relative to their model. Whether or not to encode the sequences with the special tokens relative to their model.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values: Activates and controls padding. Accepts the following values:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
...@@ -1362,7 +1286,7 @@ ENCODE_KWARGS_DOCSTRING = r""" ...@@ -1362,7 +1286,7 @@ ENCODE_KWARGS_DOCSTRING = r"""
pad_to_multiple_of (:obj:`int`, `optional`): pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of list of python integers. Acceptable values are: If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
...@@ -2608,7 +2532,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -2608,7 +2532,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
see the note above for the return type. see the note above for the return type.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among: index) among:
...@@ -2630,7 +2554,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -2630,7 +2554,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
`What are attention masks? <../glossary.html#attention-mask>`__ `What are attention masks? <../glossary.html#attention-mask>`__
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of list of python integers. Acceptable values are: If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
...@@ -3260,7 +3184,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -3260,7 +3184,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
max_target_length (:obj:`int`, `optional`): max_target_length (:obj:`int`, `optional`):
Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set Controls the maximum length of decoder inputs (target language texts or summaries) If left unset or set
to :obj:`None`, this will use the max_length value. to :obj:`None`, this will use the max_length value.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`False`): padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`):
Activates and controls padding. Accepts the following values: Activates and controls padding. Accepts the following values:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
...@@ -3269,7 +3193,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin): ...@@ -3269,7 +3193,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin):
maximum acceptable input length for the model if that argument is not provided. maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths). different lengths).
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`): return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of list of python integers. Acceptable values are: If set, will return tensors instead of list of python integers. Acceptable values are:
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
......
...@@ -27,13 +27,12 @@ from tokenizers import Tokenizer as TokenizerFast ...@@ -27,13 +27,12 @@ from tokenizers import Tokenizer as TokenizerFast
from tokenizers.decoders import Decoder as DecoderFast from tokenizers.decoders import Decoder as DecoderFast
from .convert_slow_tokenizer import convert_slow_tokenizer from .convert_slow_tokenizer import convert_slow_tokenizer
from .file_utils import add_end_docstrings from .file_utils import PaddingStrategy, add_end_docstrings
from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils import PreTrainedTokenizer
from .tokenization_utils_base import ( from .tokenization_utils_base import (
INIT_TOKENIZER_DOCSTRING, INIT_TOKENIZER_DOCSTRING,
AddedToken, AddedToken,
BatchEncoding, BatchEncoding,
PaddingStrategy,
PreTokenizedInput, PreTokenizedInput,
PreTokenizedInputPair, PreTokenizedInputPair,
PreTrainedTokenizerBase, PreTrainedTokenizerBase,
...@@ -308,7 +307,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase): ...@@ -308,7 +307,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
section. section.
Args: Args:
padding_strategy (:class:`~transformers.tokenization_utils_base.PaddingStrategy`): padding_strategy (:class:`~transformers.file_utils.PaddingStrategy`):
The kind of padding that will be applied to the input The kind of padding that will be applied to the input
truncation_strategy (:class:`~transformers.tokenization_utils_base.TruncationStrategy`): truncation_strategy (:class:`~transformers.tokenization_utils_base.TruncationStrategy`):
The kind of truncation that will be applied to the input The kind of truncation that will be applied to the input
......
...@@ -29,13 +29,13 @@ from typing import Any, Dict, NamedTuple, Optional, Tuple, Union ...@@ -29,13 +29,13 @@ from typing import Any, Dict, NamedTuple, Optional, Tuple, Union
import numpy as np import numpy as np
from .file_utils import ( from .file_utils import (
ExplicitEnum,
is_sagemaker_distributed_available, is_sagemaker_distributed_available,
is_tf_available, is_tf_available,
is_torch_available, is_torch_available,
is_torch_cuda_available, is_torch_cuda_available,
is_torch_tpu_available, is_torch_tpu_available,
) )
from .tokenization_utils_base import ExplicitEnum
def set_seed(seed: int): def set_seed(seed: int):
......
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import tempfile
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
class FeatureExtractionMixin:
# to overwrite at feature extractactor specific tests
feat_extract_tester = None
feature_extraction_class = None
@property
def feat_extract_dict(self):
return self.feat_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_common_properties(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feat_extract, "feature_size"))
self.assertTrue(hasattr(feat_extract, "sampling_rate"))
self.assertTrue(hasattr(feat_extract, "padding_value"))
def test_feat_extract_to_json_string(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
obj = json.loads(feat_extract.to_json_string())
for key, value in self.feat_extract_dict.items():
self.assertEqual(obj[key], value)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
feat_extract_first.save_pretrained(tmpdirname)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict())
def test_init_without_params(self):
feat_extract = self.feature_extraction_class()
self.assertIsNotNone(feat_extract)
def test_batch_feature(self):
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common()
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs})
self.assertTrue(all(len(x) == len(y) for x, y in zip(speech_inputs, processed_features[input_name])))
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common(equal_length=True)
processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="np")
batch_features_input = processed_features[input_name]
if len(batch_features_input.shape) < 3:
batch_features_input = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)
)
@require_torch
def test_batch_feature_pt(self):
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common(equal_length=True)
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="pt")
batch_features_input = processed_features[input_name]
if len(batch_features_input.shape) < 3:
batch_features_input = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)
)
@require_tf
def test_batch_feature_tf(self):
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common(equal_length=True)
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs}, tensor_type="tf")
batch_features_input = processed_features[input_name]
if len(batch_features_input.shape) < 3:
batch_features_input = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)
)
def _check_padding(self, numpify=False):
def _inputs_have_equal_length(input):
length = len(input[0])
for input_slice in input[1:]:
if len(input_slice) != length:
return False
return True
def _inputs_are_equal(input_1, input_2):
if len(input_1) != len(input_2):
return False
for input_slice_1, input_slice_2 in zip(input_1, input_2):
if not np.allclose(np.asarray(input_slice_1), np.asarray(input_slice_2), atol=1e-3):
return False
return True
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common(numpify=numpify)
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs})
pad_diff = self.feat_extract_tester.seq_length_diff
pad_max_length = self.feat_extract_tester.max_seq_length + pad_diff
pad_min_length = self.feat_extract_tester.min_seq_length
batch_size = self.feat_extract_tester.batch_size
feature_size = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
input_1 = feat_extract.pad(processed_features, padding=False)[input_name]
input_2 = feat_extract.pad(processed_features, padding="longest")[input_name]
input_3 = feat_extract.pad(processed_features, padding="max_length", max_length=len(speech_inputs[-1]))[
input_name
]
input_4 = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(ValueError):
feat_extract.pad(processed_features, padding="max_length")[input_name]
input_5 = feat_extract.pad(
processed_features, padding="max_length", max_length=pad_max_length, return_tensors="np"
)[input_name]
self.assertFalse(_inputs_have_equal_length(input_1))
self.assertTrue(_inputs_have_equal_length(input_2))
self.assertTrue(_inputs_have_equal_length(input_3))
self.assertTrue(_inputs_are_equal(input_2, input_3))
self.assertTrue(len(input_1[0]) == pad_min_length)
self.assertTrue(len(input_1[1]) == pad_min_length + pad_diff)
self.assertTrue(input_4.shape[:2] == (batch_size, len(input_3[0])))
self.assertTrue(input_5.shape[:2] == (batch_size, pad_max_length))
if feature_size > 1:
self.assertTrue(input_4.shape[2] == input_5.shape[2] == feature_size)
# test padding for `pad_to_multiple_of` for List[int] + numpy
input_6 = feat_extract.pad(processed_features, pad_to_multiple_of=10)[input_name]
input_7 = feat_extract.pad(processed_features, padding="longest", pad_to_multiple_of=10)[input_name]
input_8 = feat_extract.pad(
processed_features, padding="max_length", pad_to_multiple_of=10, max_length=pad_max_length
)[input_name]
input_9 = feat_extract.pad(
processed_features,
padding="max_length",
pad_to_multiple_of=10,
max_length=pad_max_length,
return_tensors="np",
)[input_name]
self.assertTrue(all(len(x) % 10 == 0 for x in input_6))
self.assertTrue(_inputs_are_equal(input_6, input_7))
expected_mult_pad_length = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(x) == expected_mult_pad_length for x in input_8))
self.assertTrue(input_9.shape[:2], (batch_size, expected_mult_pad_length))
if feature_size > 1:
self.assertTrue(input_9.shape[2] == feature_size)
# Check padding value is correct
padding_vector_sum = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_2[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length))
< 1e-3
)
self.assertTrue(
abs(
np.asarray(input_2[1])[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)
)
< 1e-3
)
self.assertTrue(
abs(
np.asarray(input_2[2])[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)
)
< 1e-3
)
self.assertTrue(
abs(input_5[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3
)
self.assertTrue(
abs(input_9[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length))
< 1e-3
)
def test_padding_from_list(self):
self._check_padding(numpify=False)
def test_padding_from_array(self):
self._check_padding(numpify=True)
@require_torch
def test_padding_accepts_tensors_pt(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common()
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs})
input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
input_pt = feat_extract.pad(processed_features, padding="longest", return_tensors="pt")[input_name]
self.assertTrue(abs(input_np.sum() - input_pt.numpy().sum()) < 1e-2)
@require_tf
def test_padding_accepts_tensors_tf(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_dict)
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common()
input_name = feat_extract.model_input_names[0]
processed_features = BatchFeature({input_name: speech_inputs})
input_np = feat_extract.pad(processed_features, padding="longest", return_tensors="np")[input_name]
input_tf = feat_extract.pad(processed_features, padding="longest", return_tensors="tf")[input_name]
self.assertTrue(abs(input_np.sum() - input_tf.numpy().sum()) < 1e-2)
def test_attention_mask(self):
feat_dict = self.feat_extract_dict
feat_dict["return_attention_mask"] = True
feat_extract = self.feature_extraction_class(**feat_dict)
speech_inputs = self.feat_extract_tester.prepare_inputs_for_common()
input_lenghts = [len(x) for x in speech_inputs]
input_name = feat_extract.model_input_names[0]
processed = BatchFeature({input_name: speech_inputs})
processed = feat_extract.pad(processed, padding="longest", return_tensors="np")
self.assertIn("attention_mask", processed)
self.assertListEqual(list(processed.attention_mask.shape), list(processed[input_name].shape[:2]))
self.assertListEqual(processed.attention_mask.sum(-1).tolist(), input_lenghts)
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2Config, Wav2Vec2FeatureExtractor
from transformers.testing_utils import slow
from .test_feature_extraction_common import FeatureExtractionMixin
global_rng = random.Random()
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class Wav2Vec2FeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=1,
padding_value=0.0,
sampling_rate=16000,
return_attention_mask=True,
do_normalize=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.feature_size = feature_size
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = floats_list((self.batch_size, self.max_seq_length))
else:
speech_inputs = [
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
class Wav2Vec2FeatureExtractionTest(FeatureExtractionMixin, unittest.TestCase):
feature_extraction_class = Wav2Vec2FeatureExtractor
def setUp(self):
self.feat_extract_tester = Wav2Vec2FeatureExtractionTester(self)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test not batched input
encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values
encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_zero_mean_unit_variance_normalization(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
processed = feat_extract(speech_inputs, padding="longest")
input_values = processed.input_values
def _check_zero_mean_unit_variance(input_vector):
self.assertTrue(np.abs(np.mean(input_vector)) < 1e-3)
self.assertTrue(np.abs(np.var(input_vector) - 1) < 1e-3)
_check_zero_mean_unit_variance(input_values[0, :800])
_check_zero_mean_unit_variance(input_values[1, :1000])
_check_zero_mean_unit_variance(input_values[2])
@slow
def test_pretrained_checkpoints_are_set_correctly(self):
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
config = Wav2Vec2Config.from_pretrained(model_id)
feat_extract = Wav2Vec2FeatureExtractor.from_pretrained(model_id)
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == "layer")
...@@ -29,7 +29,7 @@ from .test_modeling_common import ModelTesterMixin, _config_zero_init ...@@ -29,7 +29,7 @@ from .test_modeling_common import ModelTesterMixin, _config_zero_init
if is_torch_available(): if is_torch_available():
import torch import torch
from transformers import Wav2Vec2Config, Wav2Vec2ForCTC, Wav2Vec2ForMaskedLM, Wav2Vec2Model, Wav2Vec2Tokenizer from transformers import Wav2Vec2Config, Wav2Vec2ForCTC, Wav2Vec2ForMaskedLM, Wav2Vec2Model, Wav2Vec2Processor
class Wav2Vec2ModelTester: class Wav2Vec2ModelTester:
...@@ -324,17 +324,16 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase): ...@@ -324,17 +324,16 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
def test_inference_ctc_normal(self): def test_inference_ctc_normal(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
model.to(torch_device) model.to(torch_device)
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(1) input_speech = self._load_datasamples(1)
input_values = tokenizer(input_speech, return_tensors="pt").input_values.to(torch_device) input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
with torch.no_grad(): with torch.no_grad():
logits = model(input_values).logits logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1) predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = tokenizer.batch_decode(predicted_ids) predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
...@@ -342,11 +341,11 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase): ...@@ -342,11 +341,11 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
def test_inference_ctc_normal_batched(self): def test_inference_ctc_normal_batched(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
model.to(torch_device) model.to(torch_device)
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(2) input_speech = self._load_datasamples(2)
inputs = tokenizer(input_speech, return_tensors="pt", padding=True, truncation=True) inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
input_values = inputs.input_values.to(torch_device) input_values = inputs.input_values.to(torch_device)
...@@ -354,7 +353,7 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase): ...@@ -354,7 +353,7 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
logits = model(input_values).logits logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1) predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = tokenizer.batch_decode(predicted_ids) predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [ EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist", "a man said to the universe sir i exist",
...@@ -364,11 +363,11 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase): ...@@ -364,11 +363,11 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
def test_inference_ctc_robust_batched(self): def test_inference_ctc_robust_batched(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device) model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4) input_speech = self._load_datasamples(4)
inputs = tokenizer(input_speech, return_tensors="pt", padding=True, truncation=True) inputs = processor(input_speech, return_tensors="pt", padding=True, truncation=True)
input_values = inputs.input_values.to(torch_device) input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device)
...@@ -377,7 +376,7 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase): ...@@ -377,7 +376,7 @@ class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
logits = model(input_values, attention_mask=attention_mask).logits logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1) predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = tokenizer.batch_decode(predicted_ids) predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [ EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist", "a man said to the universe sir i exist",
......
...@@ -16,9 +16,9 @@ from typing import List, Optional ...@@ -16,9 +16,9 @@ from typing import List, Optional
from unittest import mock from unittest import mock
from transformers import is_tf_available, is_torch_available, pipeline from transformers import is_tf_available, is_torch_available, pipeline
from transformers.file_utils import to_py_obj
from transformers.pipelines import Pipeline from transformers.pipelines import Pipeline
from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow from transformers.testing_utils import _run_slow_tests, is_pipeline_test, require_tf, require_torch, slow
from transformers.tokenization_utils_base import to_py_obj
VALID_INPUTS = ["A simple string", ["list of strings"]] VALID_INPUTS = ["A simple string", ["list of strings"]]
......
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
from transformers.file_utils import FEATURE_EXTRACTOR_NAME
from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from .test_feature_extraction_wav2vec2 import floats_list
class Wav2Vec2ProcessorTest(unittest.TestCase):
def setUp(self):
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.add_kwargs_tokens_map = {
"pad_token": "<pad>",
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs):
kwargs.update(self.add_kwargs_tokens_map)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = Wav2Vec2Processor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = Wav2Vec2Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = Wav2Vec2Processor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
with processor.as_target_processor():
encoded_processor = processor(input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = Wav2Vec2Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
...@@ -23,11 +23,17 @@ import unittest ...@@ -23,11 +23,17 @@ import unittest
import numpy as np import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers import (
from transformers.models.wav2vec2 import Wav2Vec2Config, Wav2Vec2Tokenizer WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
Wav2Vec2Config,
Wav2Vec2CTCTokenizer,
Wav2Vec2Tokenizer,
)
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from transformers.testing_utils import slow from transformers.testing_utils import slow
from .test_tokenization_common import TokenizerTesterMixin
global_rng = random.Random() global_rng = random.Random()
...@@ -345,3 +351,101 @@ class Wav2Vec2TokenizerTest(unittest.TestCase): ...@@ -345,3 +351,101 @@ class Wav2Vec2TokenizerTest(unittest.TestCase):
# only "layer" feature extraction norm should make use of # only "layer" feature extraction norm should make use of
# attention_mask # attention_mask
self.assertEqual(tokenizer.return_attention_mask, config.feat_extract_norm == "layer") self.assertEqual(tokenizer.return_attention_mask, config.feat_extract_norm == "layer")
class Wav2Vec2CTCTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = Wav2Vec2CTCTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def test_tokenizer_decode(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
tokens = tokenizer.decode(sample_ids[0])
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(tokens, batch_tokens[0])
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_special(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
sample_ids = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
]
sample_ids_2 = [
[11, 5, 5, 5, 5, 5, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98],
[
24,
22,
5,
tokenizer.pad_token_id,
tokenizer.pad_token_id,
tokenizer.pad_token_id,
tokenizer.word_delimiter_token_id,
24,
22,
5,
77,
tokenizer.word_delimiter_token_id,
],
]
batch_tokens = tokenizer.batch_decode(sample_ids)
batch_tokens_2 = tokenizer.batch_decode(sample_ids_2)
self.assertEqual(batch_tokens, batch_tokens_2)
self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])
def test_tokenizer_decode_added_tokens(self):
tokenizer = self.tokenizer_class.from_pretrained("facebook/wav2vec2-base-960h")
tokenizer.add_tokens(["!", "?"])
tokenizer.add_special_tokens({"cls_token": "$$$"})
sample_ids = [
[
11,
5,
15,
tokenizer.pad_token_id,
15,
8,
98,
32,
32,
33,
tokenizer.word_delimiter_token_id,
32,
32,
33,
34,
34,
],
[24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.pad_token_id, 34, 34],
]
batch_tokens = tokenizer.batch_decode(sample_ids)
self.assertEqual(batch_tokens, ["HELLO<unk>!?!?$$$", "BYE BYE<unk>$$$"])
def test_pretrained_model_lists(self):
# Wav2Vec2Model has no max model length => no
pass
...@@ -372,6 +372,7 @@ DEPRECATED_OBJECTS = [ ...@@ -372,6 +372,7 @@ DEPRECATED_OBJECTS = [
"TextDataset", "TextDataset",
"TextDatasetForNextSentencePrediction", "TextDatasetForNextSentencePrediction",
"Wav2Vec2ForMaskedLM", "Wav2Vec2ForMaskedLM",
"Wav2Vec2Tokenizer",
"glue_compute_metrics", "glue_compute_metrics",
"glue_convert_examples_to_features", "glue_convert_examples_to_features",
"glue_output_modes", "glue_output_modes",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment