"test/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "0f2a2e3c19efadd7b46f393a73f40ac6464f8f08"
Unverified Commit c89bdfbe authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize repo (#8580)

* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
parent 90150733
import torch
from transformers.modeling_camembert import CamembertForMaskedLM
from transformers.tokenization_camembert import CamembertTokenizer
from transformers import CamembertForMaskedLM, CamembertTokenizer
def fill_mask(masked_input, model, tokenizer, topk=5):
......
......@@ -32,8 +32,14 @@ from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import transformers
from transformers import WEIGHTS_NAME, AdamW, AutoConfig, AutoTokenizer, get_linear_schedule_with_warmup
from transformers.modeling_auto import AutoModelForMultipleChoice
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
get_linear_schedule_with_warmup,
)
from transformers.trainer_utils import is_main_process
......
......@@ -3,7 +3,7 @@ from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_bert import (
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
......
......@@ -3,9 +3,13 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.configuration_roberta import RobertaConfig
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_roberta import ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
......
......@@ -16,7 +16,7 @@
"""Masked Version of BERT. It replaces the `torch.nn.Linear` layers with
:class:`~emmental.MaskedLinear` and add an additional parameters in the forward pass to
compute the adaptive mask.
Built on top of `transformers.modeling_bert`"""
Built on top of `transformers.models.bert.modeling_bert`"""
import logging
......@@ -29,8 +29,8 @@ from torch.nn import CrossEntropyLoss, MSELoss
from emmental import MaskedBertConfig
from emmental.modules import MaskedLinear
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_bert import ACT2FN, BertLayerNorm, load_tf_weights_in_bert
from transformers.modeling_utils import PreTrainedModel, prune_linear_layer
from transformers.models.bert.modeling_bert import ACT2FN, BertLayerNorm, load_tf_weights_in_bert
logger = logging.getLogger(__name__)
......
......@@ -27,7 +27,7 @@ class RagPyTorchDistributedRetriever(RagRetriever):
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PretrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
"""
......
......@@ -11,16 +11,12 @@ import numpy as np
from datasets import Dataset
import faiss
from transformers.configuration_bart import BartConfig
from transformers.configuration_dpr import DPRConfig
from transformers.configuration_rag import RagConfig
from transformers import BartConfig, BartTokenizer, DPRConfig, DPRQuestionEncoderTokenizer, RagConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_psutil_available, is_torch_available
from transformers.retrieval_rag import CustomHFIndex
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.rag.retrieval_rag import CustomHFIndex
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch_non_multi_gpu_but_fix_me
from transformers.tokenization_bart import BartTokenizer
from transformers.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.tokenization_dpr import DPRQuestionEncoderTokenizer
from transformers.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # noqa: E402 # isort:skip
......@@ -137,7 +133,7 @@ class RagRetrieverTest(TestCase):
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
with patch("transformers.retrieval_rag.load_dataset") as mock_load_dataset:
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = dataset
retriever = RagPyTorchDistributedRetriever(
config,
......
......@@ -16,7 +16,7 @@ from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params
......
......@@ -17,7 +17,7 @@ from torch.utils.data import DataLoader
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeq2SeqDataset,
......
......@@ -5,8 +5,8 @@ from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.configuration_fsmt import FSMTConfig
from transformers.file_utils import is_torch_tpu_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
......
......@@ -10,7 +10,7 @@ from parameterized import parameterized
from save_len_file import save_len_file
from test_seq2seq_examples import ARTICLES, BART_TINY, MARIAN_TINY, MBART_TINY, SUMMARIES, T5_TINY, make_test_data_dir
from transformers import AutoTokenizer
from transformers.modeling_bart import shift_tokens_right
from transformers.models.bart.modeling_bart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, require_torch_non_multi_gpu_but_fix_me, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset
......
......@@ -2,8 +2,8 @@ import os
import tempfile
import unittest
from transformers.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.file_utils import cached_property
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import require_torch_non_multi_gpu_but_fix_me, slow
......
......@@ -21,7 +21,7 @@ from torch.utils.data import Dataset, Sampler
from sentence_splitter import add_newline_to_end_of_each_sentence
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer
from transformers.file_utils import cached_property
from transformers.modeling_bart import shift_tokens_right
from transformers.models.bart.modeling_bart import shift_tokens_right
try:
......
......@@ -34,9 +34,8 @@ import torch.nn.functional as F
from tqdm import trange
from pplm_classification_head import ClassificationHead
from transformers import GPT2Tokenizer
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel
PPLM_BOW = 1
......
......@@ -35,8 +35,7 @@ All 3 models are available:
#### How to use
```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt16-en-de-12-1"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
......
......@@ -35,8 +35,7 @@ All 3 models are available:
#### How to use
```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt16-en-de-dist-12-1"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
......
......@@ -35,8 +35,7 @@ All 3 models are available:
#### How to use
```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt16-en-de-dist-6-1"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
......
......@@ -35,8 +35,7 @@ For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the S
#### How to use
```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt19-de-en-6-6-base"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
......
......@@ -35,8 +35,7 @@ For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the S
#### How to use
```python
from transformers.tokenization_fsmt import FSMTTokenizer
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/wmt19-de-en-6-6-big"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
......
......@@ -47,9 +47,7 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
### In Transformers
```python
from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/electra-base-squad2"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment