Unverified Commit c89bdfbe authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize repo (#8580)

* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
parent 90150733
...@@ -20,9 +20,8 @@ from typing import Optional, Tuple ...@@ -20,9 +20,8 @@ from typing import Optional, Tuple
import tensorflow as tf import tensorflow as tf
from .activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
from .configuration_funnel import FunnelConfig from ...file_utils import (
from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS, MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
...@@ -30,7 +29,7 @@ from .file_utils import ( ...@@ -30,7 +29,7 @@ from .file_utils import (
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_tf_outputs import ( from ...modeling_tf_outputs import (
TFBaseModelOutput, TFBaseModelOutput,
TFMaskedLMOutput, TFMaskedLMOutput,
TFMultipleChoiceModelOutput, TFMultipleChoiceModelOutput,
...@@ -38,7 +37,7 @@ from .modeling_tf_outputs import ( ...@@ -38,7 +37,7 @@ from .modeling_tf_outputs import (
TFSequenceClassifierOutput, TFSequenceClassifierOutput,
TFTokenClassifierOutput, TFTokenClassifierOutput,
) )
from .modeling_tf_utils import ( from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss, TFMaskedLanguageModelingLoss,
TFMultipleChoiceLoss, TFMultipleChoiceLoss,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -49,8 +48,9 @@ from .modeling_tf_utils import ( ...@@ -49,8 +48,9 @@ from .modeling_tf_utils import (
keras_serializable, keras_serializable,
shape_list, shape_list,
) )
from .tokenization_utils import BatchEncoding from ...tokenization_utils import BatchEncoding
from .utils import logging from ...utils import logging
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
from typing import List, Optional from typing import List, Optional
from .tokenization_bert import BertTokenizer from ...utils import logging
from .utils import logging from ..bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -16,9 +16,9 @@ ...@@ -16,9 +16,9 @@
from typing import List, Optional from typing import List, Optional
from .tokenization_bert_fast import BertTokenizerFast from ...utils import logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_funnel import FunnelTokenizer from .tokenization_funnel import FunnelTokenizer
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config
from .tokenization_gpt2 import GPT2Tokenizer
if is_tokenizers_available():
from .tokenization_gpt2_fast import GPT2TokenizerFast
if is_torch_available():
from .modeling_gpt2 import (
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
GPT2DoubleHeadsModel,
GPT2ForSequenceClassification,
GPT2LMHeadModel,
GPT2Model,
GPT2PreTrainedModel,
load_tf_weights_in_gpt2,
)
if is_tf_available():
from .modeling_tf_gpt2 import (
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGPT2DoubleHeadsModel,
TFGPT2LMHeadModel,
TFGPT2MainLayer,
TFGPT2Model,
TFGPT2PreTrainedModel,
)
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
# limitations under the License. # limitations under the License.
""" OpenAI GPT-2 configuration """ """ OpenAI GPT-2 configuration """
from .configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -24,28 +24,28 @@ import torch ...@@ -24,28 +24,28 @@ import torch
import torch.nn as nn import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss from torch.nn import CrossEntropyLoss, MSELoss
from .activations import ACT2FN from ...activations import ACT2FN
from .configuration_gpt2 import GPT2Config from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_outputs import ( from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithPastAndCrossAttentions, CausalLMOutputWithPastAndCrossAttentions,
SequenceClassifierOutputWithPast, SequenceClassifierOutputWithPast,
) )
from .modeling_utils import ( from ...modeling_utils import (
Conv1D, Conv1D,
PreTrainedModel, PreTrainedModel,
SequenceSummary, SequenceSummary,
find_pruneable_heads_and_indices, find_pruneable_heads_and_indices,
prune_conv1d_layer, prune_conv1d_layer,
) )
from .utils import logging from ...utils import logging
from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -21,17 +21,16 @@ from typing import List, Optional, Tuple ...@@ -21,17 +21,16 @@ from typing import List, Optional, Tuple
import tensorflow as tf import tensorflow as tf
from .activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
from .configuration_gpt2 import GPT2Config from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
from .modeling_tf_utils import ( from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss, TFCausalLanguageModelingLoss,
TFConv1D, TFConv1D,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -41,8 +40,9 @@ from .modeling_tf_utils import ( ...@@ -41,8 +40,9 @@ from .modeling_tf_utils import (
keras_serializable, keras_serializable,
shape_list, shape_list,
) )
from .tokenization_utils import BatchEncoding from ...tokenization_utils import BatchEncoding
from .utils import logging from ...utils import logging
from .configuration_gpt2 import GPT2Config
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -23,8 +23,8 @@ from typing import Optional, Tuple ...@@ -23,8 +23,8 @@ from typing import Optional, Tuple
import regex as re import regex as re
from .tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -21,10 +21,10 @@ from typing import Optional, Tuple ...@@ -21,10 +21,10 @@ from typing import Optional, Tuple
from tokenizers import pre_tokenizers from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpt2 import GPT2Tokenizer from .tokenization_gpt2 import GPT2Tokenizer
from .tokenization_utils_base import BatchEncoding
from .tokenization_utils_fast import PreTrainedTokenizerFast
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tokenizers_available
from .tokenization_herbert import HerbertTokenizer
if is_tokenizers_available():
from .tokenization_herbert_fast import HerbertTokenizerFast
...@@ -13,9 +13,9 @@ ...@@ -13,9 +13,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_bert import BasicTokenizer from ...utils import logging
from .tokenization_xlm import XLMTokenizer from ..bert.tokenization_bert import BasicTokenizer
from .utils import logging from ..xlm.tokenization_xlm import XLMTokenizer
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -15,14 +15,14 @@ ...@@ -15,14 +15,14 @@
from typing import List, Optional, Tuple from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import ( from .tokenization_herbert import (
PRETRAINED_INIT_CONFIGURATION, PRETRAINED_INIT_CONFIGURATION,
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES, PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES,
PRETRAINED_VOCAB_FILES_MAP, PRETRAINED_VOCAB_FILES_MAP,
HerbertTokenizer, HerbertTokenizer,
) )
from .tokenization_utils_fast import PreTrainedTokenizerFast
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tokenizers_available, is_torch_available
from .configuration_layoutlm import LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMConfig
from .tokenization_layoutlm import LayoutLMTokenizer
if is_tokenizers_available():
from .tokenization_layoutlm_fast import LayoutLMTokenizerFast
if is_torch_available():
from .modeling_layoutlm import (
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMForMaskedLM,
LayoutLMForTokenClassification,
LayoutLMModel,
)
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
""" LayoutLM model configuration """ """ LayoutLM model configuration """
from .configuration_bert import BertConfig from ...utils import logging
from .utils import logging from ..bert.configuration_bert import BertConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -21,22 +21,22 @@ import torch ...@@ -21,22 +21,22 @@ import torch
from torch import nn from torch import nn
from torch.nn import CrossEntropyLoss from torch.nn import CrossEntropyLoss
from .activations import ACT2FN from ...activations import ACT2FN
from .configuration_layoutlm import LayoutLMConfig from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import (
from .modeling_outputs import (
BaseModelOutputWithCrossAttentions, BaseModelOutputWithCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput, MaskedLMOutput,
TokenClassifierOutput, TokenClassifierOutput,
) )
from .modeling_utils import ( from ...modeling_utils import (
PreTrainedModel, PreTrainedModel,
apply_chunking_to_forward, apply_chunking_to_forward,
find_pruneable_heads_and_indices, find_pruneable_heads_and_indices,
prune_linear_layer, prune_linear_layer,
) )
from .utils import logging from ...utils import logging
from .configuration_layoutlm import LayoutLMConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -127,7 +127,7 @@ class LayoutLMEmbeddings(nn.Module): ...@@ -127,7 +127,7 @@ class LayoutLMEmbeddings(nn.Module):
return embeddings return embeddings
# Copied from transformers.modeling_bert.BertSelfAttention with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->LayoutLM
class LayoutLMSelfAttention(nn.Module): class LayoutLMSelfAttention(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -206,7 +206,7 @@ class LayoutLMSelfAttention(nn.Module): ...@@ -206,7 +206,7 @@ class LayoutLMSelfAttention(nn.Module):
return outputs return outputs
# Copied from transformers.modeling_bert.BertSelfOutput with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->LayoutLM
class LayoutLMSelfOutput(nn.Module): class LayoutLMSelfOutput(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -221,7 +221,7 @@ class LayoutLMSelfOutput(nn.Module): ...@@ -221,7 +221,7 @@ class LayoutLMSelfOutput(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertAttention with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->LayoutLM
class LayoutLMAttention(nn.Module): class LayoutLMAttention(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -269,7 +269,7 @@ class LayoutLMAttention(nn.Module): ...@@ -269,7 +269,7 @@ class LayoutLMAttention(nn.Module):
return outputs return outputs
# Copied from transformers.modeling_bert.BertIntermediate # Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LayoutLMIntermediate(nn.Module): class LayoutLMIntermediate(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -285,7 +285,7 @@ class LayoutLMIntermediate(nn.Module): ...@@ -285,7 +285,7 @@ class LayoutLMIntermediate(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertOutput with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
class LayoutLMOutput(nn.Module): class LayoutLMOutput(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -300,7 +300,7 @@ class LayoutLMOutput(nn.Module): ...@@ -300,7 +300,7 @@ class LayoutLMOutput(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertLayer with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->LayoutLM
class LayoutLMLayer(nn.Module): class LayoutLMLayer(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -360,7 +360,7 @@ class LayoutLMLayer(nn.Module): ...@@ -360,7 +360,7 @@ class LayoutLMLayer(nn.Module):
return layer_output return layer_output
# Copied from transformers.modeling_bert.BertEncoder with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->LayoutLM
class LayoutLMEncoder(nn.Module): class LayoutLMEncoder(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -435,7 +435,7 @@ class LayoutLMEncoder(nn.Module): ...@@ -435,7 +435,7 @@ class LayoutLMEncoder(nn.Module):
) )
# Copied from transformers.modeling_bert.BertPooler # Copied from transformers.models.bert.modeling_bert.BertPooler
class LayoutLMPooler(nn.Module): class LayoutLMPooler(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -451,7 +451,7 @@ class LayoutLMPooler(nn.Module): ...@@ -451,7 +451,7 @@ class LayoutLMPooler(nn.Module):
return pooled_output return pooled_output
# Copied from transformers.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->LayoutLM
class LayoutLMPredictionHeadTransform(nn.Module): class LayoutLMPredictionHeadTransform(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -469,7 +469,7 @@ class LayoutLMPredictionHeadTransform(nn.Module): ...@@ -469,7 +469,7 @@ class LayoutLMPredictionHeadTransform(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertLMPredictionHead with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->LayoutLM
class LayoutLMLMPredictionHead(nn.Module): class LayoutLMLMPredictionHead(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -490,7 +490,7 @@ class LayoutLMLMPredictionHead(nn.Module): ...@@ -490,7 +490,7 @@ class LayoutLMLMPredictionHead(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->LayoutLM
class LayoutLMOnlyMLMHead(nn.Module): class LayoutLMOnlyMLMHead(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
""" Tokenization class for model LayoutLM.""" """ Tokenization class for model LayoutLM."""
from .tokenization_bert import BertTokenizer from ...utils import logging
from .utils import logging from ..bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -15,9 +15,9 @@ ...@@ -15,9 +15,9 @@
""" Tokenization class for model LayoutLM.""" """ Tokenization class for model LayoutLM."""
from .tokenization_bert_fast import BertTokenizerFast from ...utils import logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_layoutlm import LayoutLMTokenizer from .tokenization_layoutlm import LayoutLMTokenizer
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_longformer import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig
from .tokenization_longformer import LongformerTokenizer
if is_tokenizers_available():
from .tokenization_longformer_fast import LongformerTokenizerFast
if is_torch_available():
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerSelfAttention,
)
if is_tf_available():
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForQuestionAnswering,
TFLongformerModel,
TFLongformerSelfAttention,
)
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
from typing import List, Union from typing import List, Union
from .configuration_roberta import RobertaConfig from ...utils import logging
from .utils import logging from ..roberta.configuration_roberta import RobertaConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment