Unverified Commit c89bdfbe authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize repo (#8580)

* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
parent 90150733
......@@ -4,9 +4,8 @@ from typing import Optional, Tuple
import tensorflow as tf
from .activations_tf import get_tf_activation
from .configuration_electra import ElectraConfig
from .file_utils import (
from ...activations_tf import get_tf_activation
from ...file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput,
add_code_sample_docstrings,
......@@ -14,7 +13,7 @@ from .file_utils import (
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_tf_outputs import (
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
......@@ -22,7 +21,7 @@ from .modeling_tf_outputs import (
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from .modeling_tf_utils import (
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFMultipleChoiceLoss,
TFPreTrainedModel,
......@@ -34,8 +33,9 @@ from .modeling_tf_utils import (
keras_serializable,
shape_list,
)
from .tokenization_utils import BatchEncoding
from .utils import logging
from ...tokenization_utils import BatchEncoding
from ...utils import logging
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__)
......@@ -54,7 +54,7 @@ TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
]
# Copied from transformers.modeling_tf_bert.TFBertSelfAttention
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention
class TFElectraSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -126,7 +126,7 @@ class TFElectraSelfAttention(tf.keras.layers.Layer):
return outputs
# Copied from transformers.modeling_tf_bert.TFBertSelfOutput
# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput
class TFElectraSelfOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -145,7 +145,7 @@ class TFElectraSelfOutput(tf.keras.layers.Layer):
return hidden_states
# Copied from from transformers.modeling_tf_bert.TFBertAttention with Bert->Electra
# Copied from from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
class TFElectraAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -166,7 +166,7 @@ class TFElectraAttention(tf.keras.layers.Layer):
return outputs
# Copied from transformers.modeling_tf_bert.TFBertIntermediate
# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate
class TFElectraIntermediate(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -187,7 +187,7 @@ class TFElectraIntermediate(tf.keras.layers.Layer):
return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertOutput
# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput
class TFElectraOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -206,7 +206,7 @@ class TFElectraOutput(tf.keras.layers.Layer):
return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertLayer with Bert->Electra
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
class TFElectraLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -227,7 +227,7 @@ class TFElectraLayer(tf.keras.layers.Layer):
return outputs
# Copied from transformers.modeling_tf_bert.TFBertEncoder with Bert->Electra
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
class TFElectraEncoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -271,7 +271,7 @@ class TFElectraEncoder(tf.keras.layers.Layer):
)
# Copied from transformers.modeling_tf_bert.TFBertPooler
# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler
class TFElectraPooler(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
......@@ -332,7 +332,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer):
super().build(input_shape)
# Copied from transformers.modeling_tf_bert.TFBertEmbeddings.call
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
def call(
self,
input_ids=None,
......@@ -367,7 +367,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer):
else:
raise ValueError("mode {} is not valid.".format(mode))
# Copied from transformers.modeling_tf_bert.TFBertEmbeddings._embedding
# Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings._embedding
def _embedding(self, input_ids, position_ids, token_type_ids, inputs_embeds, training=False):
"""Applies embedding based on inputs tensor."""
assert not (input_ids is None and inputs_embeds is None)
......
......@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .tokenization_bert import BertTokenizer
from ..bert.tokenization_bert import BertTokenizer
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
......
......@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .tokenization_bert_fast import BertTokenizerFast
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_electra import ElectraTokenizer
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_torch_available
from .configuration_encoder_decoder import EncoderDecoderConfig
if is_torch_available():
from .modeling_encoder_decoder import EncoderDecoderModel
......@@ -16,8 +16,8 @@
import copy
from .configuration_utils import PretrainedConfig
from .utils import logging
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
......@@ -81,7 +81,7 @@ class EncoderDecoderConfig(PretrainedConfig):
decoder_config = kwargs.pop("decoder")
decoder_model_type = decoder_config.pop("model_type")
from .configuration_auto import AutoConfig
from ..auto.configuration_auto import AutoConfig
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
......
......@@ -17,12 +17,12 @@
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import Seq2SeqLMOutput
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_encoder_decoder import EncoderDecoderConfig
from .configuration_utils import PretrainedConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from .modeling_outputs import Seq2SeqLMOutput
from .modeling_utils import PreTrainedModel
from .utils import logging
logger = logging.get_logger(__name__)
......@@ -155,12 +155,12 @@ class EncoderDecoderModel(PreTrainedModel):
super().__init__(config)
if encoder is None:
from .modeling_auto import AutoModel
from ..auto.modeling_auto import AutoModel
encoder = AutoModel.from_config(config.encoder)
if decoder is None:
from .modeling_auto import AutoModelForCausalLM
from ..auto.modeling_auto import AutoModelForCausalLM
decoder = AutoModelForCausalLM.from_config(config.decoder)
......@@ -286,10 +286,10 @@ class EncoderDecoderModel(PreTrainedModel):
assert (
encoder_pretrained_model_name_or_path is not None
), "If `model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has to be defined"
from .modeling_auto import AutoModel
from ..auto.modeling_auto import AutoModel
if "config" not in kwargs_encoder:
from .configuration_auto import AutoConfig
from ..auto.configuration_auto import AutoConfig
encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
......@@ -309,10 +309,10 @@ class EncoderDecoderModel(PreTrainedModel):
assert (
decoder_pretrained_model_name_or_path is not None
), "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has to be defined"
from .modeling_auto import AutoModelForCausalLM
from ..auto.modeling_auto import AutoModelForCausalLM
if "config" not in kwargs_decoder:
from .configuration_auto import AutoConfig
from ..auto.configuration_auto import AutoConfig
decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_torch_available
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig
from .tokenization_flaubert import FlaubertTokenizer
if is_torch_available():
from .modeling_flaubert import (
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
if is_tf_available():
from .modeling_tf_flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
......@@ -14,8 +14,8 @@
# limitations under the License.
""" Flaubert configuration, based on XLM. """
from .configuration_xlm import XLMConfig
from .utils import logging
from ...utils import logging
from ..xlm.configuration_xlm import XLMConfig
logger = logging.get_logger(__name__)
......
......@@ -20,10 +20,10 @@ import random
import torch
from torch.nn import functional as F
from .configuration_flaubert import FlaubertConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .modeling_outputs import BaseModelOutput
from .modeling_xlm import (
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import BaseModelOutput
from ...utils import logging
from ..xlm.modeling_xlm import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
......@@ -33,7 +33,7 @@ from .modeling_xlm import (
XLMWithLMHeadModel,
get_masks,
)
from .utils import logging
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
......
......@@ -24,23 +24,23 @@ import tensorflow as tf
from transformers.activations_tf import get_tf_activation
from .configuration_flaubert import FlaubertConfig
from .file_utils import (
from ...file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
)
from .modeling_tf_outputs import TFBaseModelOutput
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras_serializable, shape_list
from .modeling_tf_xlm import (
from ...modeling_tf_outputs import TFBaseModelOutput
from ...modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras_serializable, shape_list
from ...tokenization_utils import BatchEncoding
from ...utils import logging
from ..xlm.modeling_tf_xlm import (
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
)
from .tokenization_utils import BatchEncoding
from .utils import logging
from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__)
......@@ -234,7 +234,7 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel):
return outputs
# Copied from transformers.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer):
NEW_ID = itertools.count()
......@@ -328,7 +328,7 @@ class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer):
return outputs
# Copied from transformers.modeling_tf_xlm.TFXLMTransformerFFN
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
class TFFlaubertTransformerFFN(tf.keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super().__init__(**kwargs)
......@@ -632,7 +632,7 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
# Copied from transformers.modeling_tf_xlm.TFXLMPredLayer
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
class TFFlaubertPredLayer(tf.keras.layers.Layer):
"""
Prediction layer (cross_entropy or adaptive_softmax).
......
......@@ -19,8 +19,8 @@ import unicodedata
import six
from .tokenization_xlm import XLMTokenizer
from .utils import logging
from ...utils import logging
from ..xlm.tokenization_xlm import XLMTokenizer
logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_torch_available
from .configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig
from .tokenization_fsmt import FSMTTokenizer
if is_torch_available():
from .modeling_fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
......@@ -17,8 +17,8 @@
import copy
from .configuration_utils import PretrainedConfig
from .utils import logging
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
......
......@@ -32,9 +32,7 @@ from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import WEIGHTS_NAME, logging
from transformers.configuration_fsmt import FSMTConfig
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.models.fsmt import VOCAB_FILES_NAMES, FSMTConfig, FSMTForConditionalGeneration
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
......
......@@ -37,23 +37,23 @@ import torch.nn.functional as F
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from .activations import ACT2FN
from .configuration_fsmt import FSMTConfig
from .file_utils import (
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import (
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from .modeling_utils import PreTrainedModel
from .utils import logging
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_fsmt import FSMTConfig
logger = logging.get_logger(__name__)
......
......@@ -23,10 +23,10 @@ from typing import Dict, List, Optional, Tuple
import sacremoses as sm
from .file_utils import add_start_docstrings
from .tokenization_utils import BatchEncoding, PreTrainedTokenizer
from .tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING
from .utils import logging
from ...file_utils import add_start_docstrings
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING
from ...utils import logging
logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
if is_tokenizers_available():
from .tokenization_funnel_fast import FunnelTokenizerFast
if is_torch_available():
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
load_tf_weights_in_funnel,
)
if is_tf_available():
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
......@@ -14,8 +14,8 @@
# limitations under the License.
""" Funnel Transformer model configuration """
from .configuration_utils import PretrainedConfig
from .utils import logging
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
......
......@@ -24,16 +24,15 @@ from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn import functional as F
from .activations import ACT2FN
from .configuration_funnel import FunnelConfig
from .file_utils import (
from ...activations import ACT2FN
from ...file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from .modeling_outputs import (
from ...modeling_outputs import (
BaseModelOutput,
MaskedLMOutput,
MultipleChoiceModelOutput,
......@@ -41,8 +40,9 @@ from .modeling_outputs import (
SequenceClassifierOutput,
TokenClassifierOutput,
)
from .modeling_utils import PreTrainedModel
from .utils import logging
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment