Unverified Commit c89bdfbe authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize repo (#8580)

* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
parent 90150733
...@@ -4,9 +4,8 @@ from typing import Optional, Tuple ...@@ -4,9 +4,8 @@ from typing import Optional, Tuple
import tensorflow as tf import tensorflow as tf
from .activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
from .configuration_electra import ElectraConfig from ...file_utils import (
from .file_utils import (
MULTIPLE_CHOICE_DUMMY_INPUTS, MULTIPLE_CHOICE_DUMMY_INPUTS,
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
...@@ -14,7 +13,7 @@ from .file_utils import ( ...@@ -14,7 +13,7 @@ from .file_utils import (
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_tf_outputs import ( from ...modeling_tf_outputs import (
TFBaseModelOutput, TFBaseModelOutput,
TFMaskedLMOutput, TFMaskedLMOutput,
TFMultipleChoiceModelOutput, TFMultipleChoiceModelOutput,
...@@ -22,7 +21,7 @@ from .modeling_tf_outputs import ( ...@@ -22,7 +21,7 @@ from .modeling_tf_outputs import (
TFSequenceClassifierOutput, TFSequenceClassifierOutput,
TFTokenClassifierOutput, TFTokenClassifierOutput,
) )
from .modeling_tf_utils import ( from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss, TFMaskedLanguageModelingLoss,
TFMultipleChoiceLoss, TFMultipleChoiceLoss,
TFPreTrainedModel, TFPreTrainedModel,
...@@ -34,8 +33,9 @@ from .modeling_tf_utils import ( ...@@ -34,8 +33,9 @@ from .modeling_tf_utils import (
keras_serializable, keras_serializable,
shape_list, shape_list,
) )
from .tokenization_utils import BatchEncoding from ...tokenization_utils import BatchEncoding
from .utils import logging from ...utils import logging
from .configuration_electra import ElectraConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -54,7 +54,7 @@ TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ ...@@ -54,7 +54,7 @@ TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [
] ]
# Copied from transformers.modeling_tf_bert.TFBertSelfAttention # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention
class TFElectraSelfAttention(tf.keras.layers.Layer): class TFElectraSelfAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -126,7 +126,7 @@ class TFElectraSelfAttention(tf.keras.layers.Layer): ...@@ -126,7 +126,7 @@ class TFElectraSelfAttention(tf.keras.layers.Layer):
return outputs return outputs
# Copied from transformers.modeling_tf_bert.TFBertSelfOutput # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput
class TFElectraSelfOutput(tf.keras.layers.Layer): class TFElectraSelfOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -145,7 +145,7 @@ class TFElectraSelfOutput(tf.keras.layers.Layer): ...@@ -145,7 +145,7 @@ class TFElectraSelfOutput(tf.keras.layers.Layer):
return hidden_states return hidden_states
# Copied from from transformers.modeling_tf_bert.TFBertAttention with Bert->Electra # Copied from from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra
class TFElectraAttention(tf.keras.layers.Layer): class TFElectraAttention(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -166,7 +166,7 @@ class TFElectraAttention(tf.keras.layers.Layer): ...@@ -166,7 +166,7 @@ class TFElectraAttention(tf.keras.layers.Layer):
return outputs return outputs
# Copied from transformers.modeling_tf_bert.TFBertIntermediate # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate
class TFElectraIntermediate(tf.keras.layers.Layer): class TFElectraIntermediate(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -187,7 +187,7 @@ class TFElectraIntermediate(tf.keras.layers.Layer): ...@@ -187,7 +187,7 @@ class TFElectraIntermediate(tf.keras.layers.Layer):
return hidden_states return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertOutput # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput
class TFElectraOutput(tf.keras.layers.Layer): class TFElectraOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -206,7 +206,7 @@ class TFElectraOutput(tf.keras.layers.Layer): ...@@ -206,7 +206,7 @@ class TFElectraOutput(tf.keras.layers.Layer):
return hidden_states return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertLayer with Bert->Electra # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra
class TFElectraLayer(tf.keras.layers.Layer): class TFElectraLayer(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -227,7 +227,7 @@ class TFElectraLayer(tf.keras.layers.Layer): ...@@ -227,7 +227,7 @@ class TFElectraLayer(tf.keras.layers.Layer):
return outputs return outputs
# Copied from transformers.modeling_tf_bert.TFBertEncoder with Bert->Electra # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra
class TFElectraEncoder(tf.keras.layers.Layer): class TFElectraEncoder(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -271,7 +271,7 @@ class TFElectraEncoder(tf.keras.layers.Layer): ...@@ -271,7 +271,7 @@ class TFElectraEncoder(tf.keras.layers.Layer):
) )
# Copied from transformers.modeling_tf_bert.TFBertPooler # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler
class TFElectraPooler(tf.keras.layers.Layer): class TFElectraPooler(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -332,7 +332,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer): ...@@ -332,7 +332,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer):
super().build(input_shape) super().build(input_shape)
# Copied from transformers.modeling_tf_bert.TFBertEmbeddings.call # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call
def call( def call(
self, self,
input_ids=None, input_ids=None,
...@@ -367,7 +367,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer): ...@@ -367,7 +367,7 @@ class TFElectraEmbeddings(tf.keras.layers.Layer):
else: else:
raise ValueError("mode {} is not valid.".format(mode)) raise ValueError("mode {} is not valid.".format(mode))
# Copied from transformers.modeling_tf_bert.TFBertEmbeddings._embedding # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings._embedding
def _embedding(self, input_ids, position_ids, token_type_ids, inputs_embeds, training=False): def _embedding(self, input_ids, position_ids, token_type_ids, inputs_embeds, training=False):
"""Applies embedding based on inputs tensor.""" """Applies embedding based on inputs tensor."""
assert not (input_ids is None and inputs_embeds is None) assert not (input_ids is None and inputs_embeds is None)
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_bert import BertTokenizer from ..bert.tokenization_bert import BertTokenizer
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_bert_fast import BertTokenizerFast from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_electra import ElectraTokenizer from .tokenization_electra import ElectraTokenizer
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_torch_available
from .configuration_encoder_decoder import EncoderDecoderConfig
if is_torch_available():
from .modeling_encoder_decoder import EncoderDecoderModel
...@@ -16,8 +16,8 @@ ...@@ -16,8 +16,8 @@
import copy import copy
from .configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -81,7 +81,7 @@ class EncoderDecoderConfig(PretrainedConfig): ...@@ -81,7 +81,7 @@ class EncoderDecoderConfig(PretrainedConfig):
decoder_config = kwargs.pop("decoder") decoder_config = kwargs.pop("decoder")
decoder_model_type = decoder_config.pop("model_type") decoder_model_type = decoder_config.pop("model_type")
from .configuration_auto import AutoConfig from ..auto.configuration_auto import AutoConfig
self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config)
self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config)
......
...@@ -17,12 +17,12 @@ ...@@ -17,12 +17,12 @@
from typing import Optional from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import Seq2SeqLMOutput
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_encoder_decoder import EncoderDecoderConfig from .configuration_encoder_decoder import EncoderDecoderConfig
from .configuration_utils import PretrainedConfig
from .file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from .modeling_outputs import Seq2SeqLMOutput
from .modeling_utils import PreTrainedModel
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -155,12 +155,12 @@ class EncoderDecoderModel(PreTrainedModel): ...@@ -155,12 +155,12 @@ class EncoderDecoderModel(PreTrainedModel):
super().__init__(config) super().__init__(config)
if encoder is None: if encoder is None:
from .modeling_auto import AutoModel from ..auto.modeling_auto import AutoModel
encoder = AutoModel.from_config(config.encoder) encoder = AutoModel.from_config(config.encoder)
if decoder is None: if decoder is None:
from .modeling_auto import AutoModelForCausalLM from ..auto.modeling_auto import AutoModelForCausalLM
decoder = AutoModelForCausalLM.from_config(config.decoder) decoder = AutoModelForCausalLM.from_config(config.decoder)
...@@ -286,10 +286,10 @@ class EncoderDecoderModel(PreTrainedModel): ...@@ -286,10 +286,10 @@ class EncoderDecoderModel(PreTrainedModel):
assert ( assert (
encoder_pretrained_model_name_or_path is not None encoder_pretrained_model_name_or_path is not None
), "If `model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has to be defined" ), "If `model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has to be defined"
from .modeling_auto import AutoModel from ..auto.modeling_auto import AutoModel
if "config" not in kwargs_encoder: if "config" not in kwargs_encoder:
from .configuration_auto import AutoConfig from ..auto.configuration_auto import AutoConfig
encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path)
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
...@@ -309,10 +309,10 @@ class EncoderDecoderModel(PreTrainedModel): ...@@ -309,10 +309,10 @@ class EncoderDecoderModel(PreTrainedModel):
assert ( assert (
decoder_pretrained_model_name_or_path is not None decoder_pretrained_model_name_or_path is not None
), "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has to be defined" ), "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has to be defined"
from .modeling_auto import AutoModelForCausalLM from ..auto.modeling_auto import AutoModelForCausalLM
if "config" not in kwargs_decoder: if "config" not in kwargs_decoder:
from .configuration_auto import AutoConfig from ..auto.configuration_auto import AutoConfig
decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path)
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_torch_available
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig
from .tokenization_flaubert import FlaubertTokenizer
if is_torch_available():
from .modeling_flaubert import (
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
if is_tf_available():
from .modeling_tf_flaubert import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
# limitations under the License. # limitations under the License.
""" Flaubert configuration, based on XLM. """ """ Flaubert configuration, based on XLM. """
from .configuration_xlm import XLMConfig from ...utils import logging
from .utils import logging from ..xlm.configuration_xlm import XLMConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -20,10 +20,10 @@ import random ...@@ -20,10 +20,10 @@ import random
import torch import torch
from torch.nn import functional as F from torch.nn import functional as F
from .configuration_flaubert import FlaubertConfig from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import BaseModelOutput
from .modeling_outputs import BaseModelOutput from ...utils import logging
from .modeling_xlm import ( from ..xlm.modeling_xlm import (
XLMForMultipleChoice, XLMForMultipleChoice,
XLMForQuestionAnswering, XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple, XLMForQuestionAnsweringSimple,
...@@ -33,7 +33,7 @@ from .modeling_xlm import ( ...@@ -33,7 +33,7 @@ from .modeling_xlm import (
XLMWithLMHeadModel, XLMWithLMHeadModel,
get_masks, get_masks,
) )
from .utils import logging from .configuration_flaubert import FlaubertConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -24,23 +24,23 @@ import tensorflow as tf ...@@ -24,23 +24,23 @@ import tensorflow as tf
from transformers.activations_tf import get_tf_activation from transformers.activations_tf import get_tf_activation
from .configuration_flaubert import FlaubertConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
) )
from .modeling_tf_outputs import TFBaseModelOutput from ...modeling_tf_outputs import TFBaseModelOutput
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras_serializable, shape_list from ...modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, get_initializer, keras_serializable, shape_list
from .modeling_tf_xlm import ( from ...tokenization_utils import BatchEncoding
from ...utils import logging
from ..xlm.modeling_tf_xlm import (
TFXLMForMultipleChoice, TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple, TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification, TFXLMForSequenceClassification,
TFXLMForTokenClassification, TFXLMForTokenClassification,
) )
from .tokenization_utils import BatchEncoding from .configuration_flaubert import FlaubertConfig
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -234,7 +234,7 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel): ...@@ -234,7 +234,7 @@ class TFFlaubertModel(TFFlaubertPreTrainedModel):
return outputs return outputs
# Copied from transformers.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer): class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer):
NEW_ID = itertools.count() NEW_ID = itertools.count()
...@@ -328,7 +328,7 @@ class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer): ...@@ -328,7 +328,7 @@ class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer):
return outputs return outputs
# Copied from transformers.modeling_tf_xlm.TFXLMTransformerFFN # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
class TFFlaubertTransformerFFN(tf.keras.layers.Layer): class TFFlaubertTransformerFFN(tf.keras.layers.Layer):
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs): def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -632,7 +632,7 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer): ...@@ -632,7 +632,7 @@ class TFFlaubertMainLayer(tf.keras.layers.Layer):
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
# Copied from transformers.modeling_tf_xlm.TFXLMPredLayer # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
class TFFlaubertPredLayer(tf.keras.layers.Layer): class TFFlaubertPredLayer(tf.keras.layers.Layer):
""" """
Prediction layer (cross_entropy or adaptive_softmax). Prediction layer (cross_entropy or adaptive_softmax).
......
...@@ -19,8 +19,8 @@ import unicodedata ...@@ -19,8 +19,8 @@ import unicodedata
import six import six
from .tokenization_xlm import XLMTokenizer from ...utils import logging
from .utils import logging from ..xlm.tokenization_xlm import XLMTokenizer
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_torch_available
from .configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig
from .tokenization_fsmt import FSMTTokenizer
if is_torch_available():
from .modeling_fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
...@@ -17,8 +17,8 @@ ...@@ -17,8 +17,8 @@
import copy import copy
from .configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -32,9 +32,7 @@ from fairseq import hub_utils ...@@ -32,9 +32,7 @@ from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary from fairseq.data.dictionary import Dictionary
from transformers import WEIGHTS_NAME, logging from transformers import WEIGHTS_NAME, logging
from transformers.configuration_fsmt import FSMTConfig from transformers.models.fsmt import VOCAB_FILES_NAMES, FSMTConfig, FSMTForConditionalGeneration
from transformers.modeling_fsmt import FSMTForConditionalGeneration
from transformers.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
......
...@@ -37,23 +37,23 @@ import torch.nn.functional as F ...@@ -37,23 +37,23 @@ import torch.nn.functional as F
from torch import Tensor, nn from torch import Tensor, nn
from torch.nn import CrossEntropyLoss from torch.nn import CrossEntropyLoss
from .activations import ACT2FN from ...activations import ACT2FN
from .configuration_fsmt import FSMTConfig from ...file_utils import (
from .file_utils import (
add_code_sample_docstrings, add_code_sample_docstrings,
add_end_docstrings, add_end_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_outputs import ( from ...modeling_outputs import (
BaseModelOutput, BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput, Seq2SeqLMOutput,
Seq2SeqModelOutput, Seq2SeqModelOutput,
) )
from .modeling_utils import PreTrainedModel from ...modeling_utils import PreTrainedModel
from .utils import logging from ...utils import logging
from .configuration_fsmt import FSMTConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -23,10 +23,10 @@ from typing import Dict, List, Optional, Tuple ...@@ -23,10 +23,10 @@ from typing import Dict, List, Optional, Tuple
import sacremoses as sm import sacremoses as sm
from .file_utils import add_start_docstrings from ...file_utils import add_start_docstrings
from .tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from .tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
if is_tokenizers_available():
from .tokenization_funnel_fast import FunnelTokenizerFast
if is_torch_available():
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
load_tf_weights_in_funnel,
)
if is_tf_available():
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
# limitations under the License. # limitations under the License.
""" Funnel Transformer model configuration """ """ Funnel Transformer model configuration """
from .configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -24,16 +24,15 @@ from torch import nn ...@@ -24,16 +24,15 @@ from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn import functional as F from torch.nn import functional as F
from .activations import ACT2FN from ...activations import ACT2FN
from .configuration_funnel import FunnelConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_outputs import ( from ...modeling_outputs import (
BaseModelOutput, BaseModelOutput,
MaskedLMOutput, MaskedLMOutput,
MultipleChoiceModelOutput, MultipleChoiceModelOutput,
...@@ -41,8 +40,9 @@ from .modeling_outputs import ( ...@@ -41,8 +40,9 @@ from .modeling_outputs import (
SequenceClassifierOutput, SequenceClassifierOutput,
TokenClassifierOutput, TokenClassifierOutput,
) )
from .modeling_utils import PreTrainedModel from ...modeling_utils import PreTrainedModel
from .utils import logging from ...utils import logging
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment