Unverified Commit c89bdfbe authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Reorganize repo (#8580)

* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
parent 90150733
...@@ -20,7 +20,7 @@ import argparse ...@@ -20,7 +20,7 @@ import argparse
import pytorch_lightning as pl import pytorch_lightning as pl
import torch import torch
from transformers.modeling_longformer import LongformerForQuestionAnswering, LongformerModel from transformers import LongformerForQuestionAnswering, LongformerModel
class LightningModel(pl.LightningModule): class LightningModel(pl.LightningModule):
......
...@@ -24,23 +24,23 @@ import torch.nn as nn ...@@ -24,23 +24,23 @@ import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn import functional as F from torch.nn import functional as F
from .activations import ACT2FN, gelu from ...activations import ACT2FN, gelu
from .configuration_longformer import LongformerConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_outputs import MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput from ...modeling_outputs import MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
from .modeling_utils import ( from ...modeling_utils import (
PreTrainedModel, PreTrainedModel,
apply_chunking_to_forward, apply_chunking_to_forward,
find_pruneable_heads_and_indices, find_pruneable_heads_and_indices,
prune_linear_layer, prune_linear_layer,
) )
from .utils import logging from ...utils import logging
from .configuration_longformer import LongformerConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -285,7 +285,7 @@ def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=Tru ...@@ -285,7 +285,7 @@ def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=Tru
return attention_mask return attention_mask
# Copied from transformers.modeling_roberta.create_position_ids_from_input_ids # Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx): def create_position_ids_from_input_ids(input_ids, padding_idx):
""" """
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
...@@ -307,7 +307,7 @@ class LongformerEmbeddings(nn.Module): ...@@ -307,7 +307,7 @@ class LongformerEmbeddings(nn.Module):
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
""" """
# Copied from transformers.modeling_bert.BertEmbeddings.__init__ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
...@@ -336,7 +336,7 @@ class LongformerEmbeddings(nn.Module): ...@@ -336,7 +336,7 @@ class LongformerEmbeddings(nn.Module):
else: else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
# Copied from transformers.modeling_bert.BertEmbeddings.forward # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.forward
if input_ids is not None: if input_ids is not None:
input_shape = input_ids.size() input_shape = input_ids.size()
else: else:
...@@ -918,7 +918,7 @@ class LongformerSelfAttention(nn.Module): ...@@ -918,7 +918,7 @@ class LongformerSelfAttention(nn.Module):
return global_attn_output, global_attn_probs return global_attn_output, global_attn_probs
# Copied from transformers.modeling_bert.BertSelfOutput # Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LongformerSelfOutput(nn.Module): class LongformerSelfOutput(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -973,7 +973,7 @@ class LongformerAttention(nn.Module): ...@@ -973,7 +973,7 @@ class LongformerAttention(nn.Module):
return outputs return outputs
# Copied from transformers.modeling_bert.BertIntermediate # Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LongformerIntermediate(nn.Module): class LongformerIntermediate(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -989,7 +989,7 @@ class LongformerIntermediate(nn.Module): ...@@ -989,7 +989,7 @@ class LongformerIntermediate(nn.Module):
return hidden_states return hidden_states
# Copied from transformers.modeling_bert.BertOutput # Copied from transformers.models.bert.modeling_bert.BertOutput
class LongformerOutput(nn.Module): class LongformerOutput(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -1114,7 +1114,7 @@ class LongformerEncoder(nn.Module): ...@@ -1114,7 +1114,7 @@ class LongformerEncoder(nn.Module):
) )
# Copied from transformers.modeling_bert.BertPooler # Copied from transformers.models.bert.modeling_bert.BertPooler
class LongformerPooler(nn.Module): class LongformerPooler(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
...@@ -1130,7 +1130,7 @@ class LongformerPooler(nn.Module): ...@@ -1130,7 +1130,7 @@ class LongformerPooler(nn.Module):
return pooled_output return pooled_output
# Copied from transformers.modeling_roberta.RobertaLMHead with Roberta->Longformer # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer
class LongformerLMHead(nn.Module): class LongformerLMHead(nn.Module):
"""Longformer Head for masked language modeling.""" """Longformer Head for masked language modeling."""
......
...@@ -21,15 +21,14 @@ import tensorflow as tf ...@@ -21,15 +21,14 @@ import tensorflow as tf
from transformers.activations_tf import get_tf_activation from transformers.activations_tf import get_tf_activation
from .configuration_longformer import LongformerConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
) )
from .modeling_tf_outputs import TFMaskedLMOutput, TFQuestionAnsweringModelOutput from ...modeling_tf_outputs import TFMaskedLMOutput, TFQuestionAnsweringModelOutput
from .modeling_tf_utils import ( from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss, TFMaskedLanguageModelingLoss,
TFPreTrainedModel, TFPreTrainedModel,
TFQuestionAnsweringLoss, TFQuestionAnsweringLoss,
...@@ -37,8 +36,9 @@ from .modeling_tf_utils import ( ...@@ -37,8 +36,9 @@ from .modeling_tf_utils import (
keras_serializable, keras_serializable,
shape_list, shape_list,
) )
from .tokenization_utils import BatchEncoding from ...tokenization_utils import BatchEncoding
from .utils import logging from ...utils import logging
from .configuration_longformer import LongformerConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
...@@ -226,7 +226,7 @@ def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_se ...@@ -226,7 +226,7 @@ def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_se
return attention_mask return attention_mask
# Copied from transformers.modeling_tf_roberta.TFRobertaLMHead # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead
class TFLongformerLMHead(tf.keras.layers.Layer): class TFLongformerLMHead(tf.keras.layers.Layer):
"""Roberta Head for masked language modeling.""" """Roberta Head for masked language modeling."""
...@@ -260,7 +260,7 @@ class TFLongformerLMHead(tf.keras.layers.Layer): ...@@ -260,7 +260,7 @@ class TFLongformerLMHead(tf.keras.layers.Layer):
return x return x
# Copied from transformers.modeling_tf_roberta.TFRobertaEmbeddings # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings
class TFLongformerEmbeddings(tf.keras.layers.Layer): class TFLongformerEmbeddings(tf.keras.layers.Layer):
""" """
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
...@@ -420,7 +420,7 @@ class TFLongformerEmbeddings(tf.keras.layers.Layer): ...@@ -420,7 +420,7 @@ class TFLongformerEmbeddings(tf.keras.layers.Layer):
return tf.reshape(logits, [batch_size, length, self.vocab_size]) return tf.reshape(logits, [batch_size, length, self.vocab_size])
# Copied from transformers.modeling_tf_bert.TFBertIntermediate # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate
class TFLongformerIntermediate(tf.keras.layers.Layer): class TFLongformerIntermediate(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -441,7 +441,7 @@ class TFLongformerIntermediate(tf.keras.layers.Layer): ...@@ -441,7 +441,7 @@ class TFLongformerIntermediate(tf.keras.layers.Layer):
return hidden_states return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertOutput # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput
class TFLongformerOutput(tf.keras.layers.Layer): class TFLongformerOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -460,7 +460,7 @@ class TFLongformerOutput(tf.keras.layers.Layer): ...@@ -460,7 +460,7 @@ class TFLongformerOutput(tf.keras.layers.Layer):
return hidden_states return hidden_states
# Copied from transformers.modeling_tf_bert.TFBertPooler # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler
class TFLongformerPooler(tf.keras.layers.Layer): class TFLongformerPooler(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
...@@ -481,7 +481,7 @@ class TFLongformerPooler(tf.keras.layers.Layer): ...@@ -481,7 +481,7 @@ class TFLongformerPooler(tf.keras.layers.Layer):
return pooled_output return pooled_output
# Copied from transformers.modeling_tf_bert.TFBertSelfOutput # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput
class TFLongformerSelfOutput(tf.keras.layers.Layer): class TFLongformerSelfOutput(tf.keras.layers.Layer):
def __init__(self, config, **kwargs): def __init__(self, config, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
......
...@@ -13,8 +13,8 @@ ...@@ -13,8 +13,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_roberta import RobertaTokenizer from ...utils import logging
from .utils import logging from ..roberta.tokenization_roberta import RobertaTokenizer
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -13,9 +13,9 @@ ...@@ -13,9 +13,9 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from ...utils import logging
from ..roberta.tokenization_roberta_fast import RobertaTokenizerFast
from .tokenization_longformer import LongformerTokenizer from .tokenization_longformer import LongformerTokenizer
from .tokenization_roberta_fast import RobertaTokenizerFast
from .utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
if is_tokenizers_available():
from .tokenization_lxmert_fast import LxmertTokenizerFast
if is_torch_available():
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
if is_tf_available():
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
""" LXMERT model configuration """ """ LXMERT model configuration """
from .configuration_utils import PretrainedConfig from ...configuration_utils import PretrainedConfig
from .utils import logging from ...utils import logging
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -25,17 +25,17 @@ import torch ...@@ -25,17 +25,17 @@ import torch
from torch import nn from torch import nn
from torch.nn import CrossEntropyLoss, SmoothL1Loss from torch.nn import CrossEntropyLoss, SmoothL1Loss
from .activations import ACT2FN, gelu from ...activations import ACT2FN, gelu
from .configuration_lxmert import LxmertConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_utils import PreTrainedModel from ...modeling_utils import PreTrainedModel
from .utils import logging from ...utils import logging
from .configuration_lxmert import LxmertConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -22,18 +22,18 @@ from typing import Dict, Optional, Tuple ...@@ -22,18 +22,18 @@ from typing import Dict, Optional, Tuple
import tensorflow as tf import tensorflow as tf
from .activations_tf import get_tf_activation from ...activations_tf import get_tf_activation
from .configuration_lxmert import LxmertConfig from ...file_utils import (
from .file_utils import (
ModelOutput, ModelOutput,
add_code_sample_docstrings, add_code_sample_docstrings,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
replace_return_docstrings, replace_return_docstrings,
) )
from .modeling_tf_utils import TFPreTrainedModel, get_initializer, keras_serializable, shape_list from ...modeling_tf_utils import TFPreTrainedModel, get_initializer, keras_serializable, shape_list
from .tokenization_utils_base import BatchEncoding from ...tokenization_utils_base import BatchEncoding
from .utils import logging from ...utils import logging
from .configuration_lxmert import LxmertConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_bert import BertTokenizer from ..bert.tokenization_bert import BertTokenizer
#################################################### ####################################################
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .tokenization_bert_fast import BertTokenizerFast from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_lxmert import LxmertTokenizer from .tokenization_lxmert import LxmertTokenizer
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_sentencepiece_available, is_tf_available, is_torch_available
from .configuration_marian import MarianConfig
if is_sentencepiece_available():
from .tokenization_marian import MarianTokenizer
if is_torch_available():
from .modeling_marian import MarianMTModel
if is_tf_available():
from .modeling_tf_marian import TFMarianMTModel
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# limitations under the License. # limitations under the License.
""" Marian model configuration """ """ Marian model configuration """
from .configuration_bart import BartConfig from ..bart.configuration_bart import BartConfig
PRETRAINED_CONFIG_ARCHIVE_MAP = { PRETRAINED_CONFIG_ARCHIVE_MAP = {
......
...@@ -3,7 +3,7 @@ import os ...@@ -3,7 +3,7 @@ import os
from pathlib import Path from pathlib import Path
from typing import List, Tuple from typing import List, Tuple
from transformers.convert_marian_to_pytorch import ( from transformers.models.marian.convert_marian_to_pytorch import (
FRONT_MATTER_TEMPLATE, FRONT_MATTER_TEMPLATE,
_parse_readme, _parse_readme,
convert_all_sentencepiece_models, convert_all_sentencepiece_models,
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
"""PyTorch MarianMTModel model, ported from the Marian C++ repo.""" """PyTorch MarianMTModel model, ported from the Marian C++ repo."""
from ..bart.modeling_bart import BartForConditionalGeneration
from .configuration_marian import MarianConfig from .configuration_marian import MarianConfig
from .modeling_bart import BartForConditionalGeneration
# See all Marian models at https://huggingface.co/models?search=Helsinki-NLP # See all Marian models at https://huggingface.co/models?search=Helsinki-NLP
......
...@@ -14,10 +14,10 @@ ...@@ -14,10 +14,10 @@
# limitations under the License. # limitations under the License.
"""TF Marian model, ported from the fairseq repo.""" """TF Marian model, ported from the fairseq repo."""
from ...file_utils import add_start_docstrings, is_tf_available
from ...utils import logging
from ..bart.modeling_tf_bart import BART_START_DOCSTRING, LARGE_NEGATIVE, TFBartForConditionalGeneration
from .configuration_marian import MarianConfig from .configuration_marian import MarianConfig
from .file_utils import add_start_docstrings, is_tf_available
from .modeling_tf_bart import BART_START_DOCSTRING, LARGE_NEGATIVE, TFBartForConditionalGeneration
from .utils import logging
if is_tf_available(): if is_tf_available():
......
...@@ -7,9 +7,9 @@ from typing import Dict, List, Optional, Tuple, Union ...@@ -7,9 +7,9 @@ from typing import Dict, List, Optional, Tuple, Union
import sentencepiece import sentencepiece
from .file_utils import add_start_docstrings from ...file_utils import add_start_docstrings
from .tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from .tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING from ...tokenization_utils_base import PREPARE_SEQ2SEQ_BATCH_DOCSTRING
vocab_files_names = { vocab_files_names = {
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from ...file_utils import is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available
from .configuration_mbart import MBartConfig
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
if is_tokenizers_available():
from .tokenization_mbart_fast import MBartTokenizerFast
if is_torch_available():
from .modeling_mbart import MBartForConditionalGeneration
if is_tf_available():
from .modeling_tf_mbart import TFMBartForConditionalGeneration
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment